
Fundamentals of Borehole Logging (AES1500), April 12,2013 at 14:00-17:00h. 

Responsible lecturer: B. Vogelaar (B.B.S.A.Vogelaar@tue.nl) 

The maximum number of credit points per question is indicated between brackets. 

1) Rock properties might be obtained by laboratory measurements on recovered cores. The 
rock strength is measured in a tensile test, where Young's modulus E is given by the ratio of 
axial stress to axial strain in an uniaxial stress state. 

' (Ip) Give the unit of E, a^x, and e^x- Why does E not have a subscript? 

Hooke's law for a linear elastic isotropic solid is 

^ij=^iécSij+2/uSy. (1) 

" ^ ( I p ) Write down the full expressions for GXX and ayy. 

(2p) Show that this stress state dictates that Syy = e^z-

It can be shown that = ~ ITT'^ r ^xx • (2) 

(2p) Explain why Sxx and % have opposite sign. What is the name of their ratio? 

(2p) Derive the Young's modulus: 

^ ^ / / ( 3 ; i + 2//) 
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In seismic and borehole acoustics we have body and surface waves, where the velocity is 
given by the square root of some elastic modulus over density. One might argue a similar 
relationship using Young's modulus: 

where p is the density. 

(2p) Discuss the significance of equation (3). 

2) Stoneley waves may propagate in a fluid-filled borehole. Consider a homogeneous fluid 
with density pf in a cylindrical borehole (radius r) penetrating a homogeneous isotropic 
medium having shear modulus p (Figure 1). 
) 

) (2p) Discuss the effect of lowering the borehole fluid. 

\ 

We assume an axially P-wave propagating tube wave mode. Usingp for pressure and ii^ for 

vertical displacement, Newton's second law applied to a volume element of fluid, V= idAz, 
is a a2 

K 2 2 . O II 

dz de (4) 



(lp) Identify the appropriate terms of Newton's second law from equation (4). 

We develop equation (4) by introducing the bulk modulus of the fluid Kf. 

(Ip) Give the expression of Kf in terms of p and give its unit, 

e change in fluid volume AFis due to expansion along the axis and radially 

lfV = nr 
dz 

hz + ln r li^lsz. 
(5) 

where u,- is the change in the radius of the borehole. 

(Ip) Explain why equation (5) is only valid for u,-« r. 

(Ip) Show that we get 

y dz r J 
The relation between ii,- and p for our borehole configuration is 

r 2/j. 

(6) 

(7) 

W(2p) Use above equations to derive the expression of the squared tube wave velocity in 
te îns of and 

_ ^ > ( ^ ( 2 p ) Why is the tube wave velocity in practice close to the velocity in the borehole fluid? 

- A J 

Figure 1 



For poroelastic rocks the Gassmann velocity is 

V p = , ^ ^ ^ , (13) 
V P 

where p is the total weighted density and p is the shear modulus. Fluid substitution is an 
important part of seismic attribute work. The most commonly used technique for doing this 
involves the application of Gassmann's equations. 

(2p) Discuss what will happen with the Gassmann velocity i f we replace the water in the 
5̂ ore space by light oil (having a bulk modulus of half that of water). 

•''(2p) Write all given bulk moduli in ascending order (under normal borehole conditions) and 
stify your choice on physical grounds. 

4) The Biot momentum equation for the fluid in an elastic porous material is 

' dt dx ^ dt /CQ 

with porosity <j), fluid density pf, permeability ko, viscosity rj, and tortuosity GOO. We only 

consider the ID compressional case, so the wave propagates in the ;c-direction and the average 

solid and fluid particle velocities in the x-direction are v and w. 

(2p) Give the units of all variables of equation (14). 

Kai-man-Cozeny relates permeability and porosity to characteristic grain size. 

\b)) (2p) Explain whether grain size then plays a dominant role at high or low-frequencies in 
< equation (14). 

\c) (2p) Show that we may find Darcy's law for the case of a rigid matrix. 

Henceforth, we assume haiTnonic wave propagation in the x-direction for the relevant 
variables, e.g. v = vexp i (co t-k x). 

The full Biot equations can then be written in the frequency domain: 

nPid -P\= nQ-PMC"\ (15) 

where P, Q, and R are elastic moduli and p j , a n d are complex densities. 

d) (2p) Explain the different meaning of velocity v and velocity c. 

Set (15) gives the dispersion relation + +0^0 =0' with solutions. 

j^Q) (2p) What is the physical implication of the fact that the terni 'complex densitjeslrefers to 
their frequency-dependent nature? 



3) The so-called Gedanken experiments can be used to derive an expression for the Gassmann 
modulus of fully saturated rocks. Consider a fully saturated rock sample immersed in a 
pressure tank containing the saturating liquid. A piston causes an external pressure change 
dpe. We perform two tests. 

Upon changing the hydrostatic pressure, the volume of the solid grains of an open sample 
changes, so that we can measure the bulk modulus of the grains (unjacketed test). 

Assume now that we maintain a constant pore pressure (e.g. atmospheric pressure) by means 
of a capillary tube in a closed sample (jacketed test). Then, the amount of fluid that is 
squeezed out of the sample is measured by the fluid rise in the capillary tube. 

dp dK d^ 

Unjacketed dPe 0 - — dp. 
V 

- — dp. 0 

Jacketed 0 dPe dp. 

The change in bulk volume as a result of the change in pore pressure and normal intergranular 
stress is the sum of the change in bulk volume of the jacketed and unjacketed test. 

dV^ _ dp^do-g 

V. K b ^^s ^^b 

in which ao is the isotropic component of the intergranular stress. 

(2p) Explain how ao is related to «7y in equation (1). 

'(Ip) Show that also 

v.. b ' s ' f 

(Ip) Use the table and the definition of the bulk modulus of the fluid to show that 
cpression (9) gives 

d_K dp + ~d(T, 

Henceforward, we assume incompressible grains. 

) (2p) Use equations (8) and (10) and the definition of the Gassmann modulus 

K 

dK 
dp^ and dp^=d(rg+dp. 

to show that for incompressible grains 

(8) 

(9) 

(10) 

(11) 

(12) 


