Exam AES1340

Applied Reservoir Engineering

re-examination 16 June 2011

Name:

Student number:

Use separate sheets to write your answers and clear derivation with name and student number indicated at the top. Also present them in the logical order from answer 1 to answer 7. An answer without derivation or explanation will receive a lower score than a complete answer.

lecture la Question 1:

- √ a) What are the main differences between reserves and contingent resources?
- %b) Consider an oil field of 50 mln blls You booked 10 mln blls proven reserves at the start of the project to be produced from one well. From a pressure analysis test in this well there are strong indications of a sealing fault within the assumed reservoir. What are the likely consequences for the reserves booking and your outlook on activities and future reserves bookings?

Coclara Question 2:

- (a) Write down the Havlene MBE formulation and describe the key terms.
- ✓ b) You develop a reservoir by pressure depletion through 5 wells. You expected pressure to decline significantly but they stay close to the initial value. What is the most likely cause.
- c) What would be the consequence for your facilities with respect to gas handling, water handling and oil ha lling? Explain. or long. big.

Cecture 16 Question 3:

- ≼ a) What is the most important analysis for a gas reservoir?
- √ b) After you initiated gas production and the pressure has declined about 10%, how do you determine the initial gas in place and what is the key aspect which influences the outcome.
- C) What are the two key aspects that determine your recovery factor?

- b) Explain what is happening between the left and right side of the reservoir.
- What can you do to improve recovery while you have no additional slots available?

Question 7: (ec 3b

- < a) Sketch the principle of gas coning
- b) Mention 3 ways to avoid/reduce gas coning
- c) What would you expect the oil satruation to be inside the gas cone.

Question 8: 600

- M a) Derive the equation for the maximum Oil-Steam-Ratio in a steam injection project
- ♦ b) Why is the real ratio smaller than the one under a).
- ≺c) How can you initially improve oil production rate in a steam drive project?

Question 9:

- a) At 100 bar and standard temperature, is CO2 a gas or a liquid?
- $^{\nu}$ b) What is MMP and how do you determine it?
- √c) What are key concerns in a CO2 flood?

Question 10: EOR

- [∞]a) Write down the equation for the capillary number.
- b) Which parameter do we try to change to reduce residual oil?
- c) Plot the key phase behavior in a ternary diagram of water, oil and surfactant that describes the Type II-, Type III and Type II+ system.
- √d) What are the two key roles for alkaline in a Alkaline Surfactant Polymer flood?

Question 4: lecture 07

(a) Given the following data, do a Horner analysis of the build-up and derive the permeability. Be clear on the equations you use.

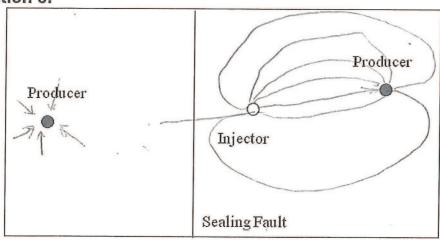
			ī
	time [hrs]	pressure [psi]	
	0	[hai]	3
	0,012063	3571,266	
	0,053179	3393,69	
	0,111658	3347,114	
	1,033557	3269,431	
	2,170113	3246,75	
	20,08747	3175,08	
	100,2102	3099,767	
	145,2064	3079,677	
	210,4066	3059,009	
1 _		0050 00	end of
EP	238,09	3052,02	drawdown
	238,0911	3076,184	
-	√238,1007 ✓ 238,1772	3235,929	
	V 238,2972	3463,19 3501,14	
	238,6471	3534,143	
	239,5877	3564,652	
(35)	242,1166	3593,926	***************************************
	250,3407	3626,894	
	275,3619	3665,466	
	V 292,0977 -	3679,472	
	× 351,4874	3706,722	
	.402,4049	3718,97	e presentative white and 11
	i marin e sen u		
	Known para	meters in SI u	units
	q	0,006944	m3/s
	Во	1,2	
	μ	0,004	Pa/s
	h	25	m
	C	1,00E-09	1/Pa
	rw	0,1	
	Gamma	0,5772	
	1 psi =	6896,5	N/m2

What are the two key aspects you can take away from p* (no need to derive the value!)

c) What is a radius of investigation, provide formula and where do you use it for?

Question 5:

Cecture 02


How do you derive the permeability from the well test results given in the plot below? Give the key equation.

- Sketch how the graph would change if you install a domwhole shut-in device with down hole gauges.
- d) Describe what happens during Semi-Steady State. When would you expect it to start in the above graph.

Question 6:

lec 3a

