Exam AES1340

Applied Reservoir Engineering

re-examination 23 June 2010 10:00-13:00

,		-				
ł	V	0	*	\mathbf{r}	1	٠.

Student number:

Use separate sheets to write your answers and clear derivation with name and student number indicated at the top. Also present them in the logical order from answer 1 to answer 9. An answer without derivation or explanation will receive a lower score than a complete answer.

Question 1:

- a) What is the key difference between Reserves and Scope for Recovery?
- b) What is the key difference between developed and undeveloped reserves?
- c) Consider an oil field of 1000 mln blls where the facilities are build but not assembled yet at the oil field. The facilities and wells are sized based on a study of some years ago, indicating a Recovery Factor of 30% with a range between 25% and 35%. In the mean time the development team has indicated that with infill drilling an extra 10% can be recovered, but they still need to check a few uncertainties. Which volumes will you book under the various classifications as also referred to in the above two questions.
- d) What would you report as 'proven' reserves to the SEC?

Question 2:

a) Derive the Gas Initial In Place in a producing gas field at 2000 m depth from the following information:

Pressure	Produced gas
(bar)	(mln m3)
300	0
250	1,158
200	2,548

Pressure of export gas pipeline is 100 bar

The facilities can allow a THP of 60 bar

Average density of gas column in well is 130 kg/m3

Some Rock properties: Permeability = 5000 mD

Porosity = 0.25

Initial gas saturation = 0.9

Residual gas saturation = 0,3 Rock compressibility = 90 10-6 1/bar

Gas Properties:

Pressure	Density	Z Factor	Viscosity
bar	g/cm³	-	cР
50	0,0379	0,9207	0,014
100	0,0802	0,8706	0,016
150	0,1224	0,8556	0,019
200	0,1602	0,8711	0,022
250	0,1923	0,9074	0,025
300	0.219	0.9562	0.028

rock is incompressible, no aquifer indications

- b) Provide options to the general manager to further improve the recovery of this field.
- c) Would you propose to use the field for CO2 storage and at what stage of field life? Provide a discussion on risks and opportunities.

Question 3:

- a) What are the basic principles for a material balance analysis?
- b) Why is in principle the name 'material balance' wrong?
- c) Who will mainly use this approach?

Question 4:

- a) Write down the equation for the Dykstra Parson coefficient.
- b) What does a value of one represent?
- c) In case of a very high DP coefficient, what more factors will influence the displacement efficiency of a water flood?

Question 5:

a) Sketch the expected stream lines in the following well pattern. (Copy the picture on your answer sheets).

- b) What would you propose to the Development Manager to improve the flood, while you know that the budget is already very tight?
- c) What are the parallels with the Dykstra-Parson method?

Question 6:

- a) How do you derive the permeability and initial reservoir pressure from a build up well test using the Horner plot?
- b) Explain in which time period this method is valid and how you could check.
- c) Explain the difference between the Horner plot approach and the type curve approach. Which method and why would you prefer?

Question 7:

a) For a given oil composition how would you expect the ternary diagram for HC gas injection and CO2 injection look like. Sketch two graphs, accuracy is not relevant but relative differences are.

- b) In the graph for HC gas, illustrate what means to enrich the gas for higher recoveries?
- c) Would enrichment make sense for CO2?

Question 8:

- a) Describe how polymer flooding works. Use a fractional flow plot to illustrate this
- b) What means 'shear thinning' and 'shear thickening'?
- c) What is the key concern at the injectors?

Question 9:

- a) What are the key aspects of a field to screen it for steam injection?
- b) In which case would you consider polymer flooding a better option?