'Advanced reflection seismology and seismic imaging' (AES 1560-1)

November 5, 2012
1a. Consider the law of mass conservation

$$
\frac{\partial}{\partial t} \int_{\mathbb{V}} \rho d \mathbb{V}=-\oint_{\mathbb{S}} \rho \vec{v} \cdot \vec{n} d \mathbb{S}+\frac{\partial}{\partial t} \int_{\mathbb{V}} i_{m} d \mathbb{V}
$$

Use the theorem of Gauss to change the surface integral into a volume integral. Derive the non-linear equation of continuity.

1b. Linearize the equation of continuity for a non-flowing medium, using $\rho(\vec{r}, t)=\rho_{0}(\vec{r})+\Delta \rho(\vec{r}, t)$, assuming $\Delta \rho(\vec{r}, t) \ll \rho_{0}(\vec{r})$ and $\left|\nabla \rho_{0}(\vec{r})\right| \ll|\nabla(\Delta \rho(\vec{r}, t))|$. Substitute the linearized equation of state $\frac{\Delta \rho}{\rho_{0}}=\frac{1}{K} \Delta p$.

1c. Linearize the non-linear equation of motion $\frac{\partial(\rho \vec{v})}{\partial t}+\vec{v} \nabla \cdot(\rho \vec{v})+(\rho \vec{v} \cdot \nabla) \vec{v}+\nabla p=\vec{f}$ in a similar way. Rewrite the linearized equations of continuity and motion by making the substitutions $\Delta p(\vec{r}, t) \rightarrow p(\vec{r}, t)$ and $\rho_{0}(\vec{r}) \rightarrow \rho(\vec{r})$. Derive the wave equation for an inhomogeneous medium by eliminating \vec{v}.

1 d . For a homogeneous source-free medium, the result of 1 c reduces to $\nabla^{2} p-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0$, where c is the propagation velocity. Derive an expression for c in terms of K and ρ.

1e. Show that the plane wave expression $p(x, y, z, t)=u\left(t-s_{x} x-s_{y} y-s_{z} z\right)$ is a solution of the wave equation in 1d and derive a relation between the slownesses s_{x}, s_{y}, s_{z} and the propagation velocity c.

1f. Use the linearized equation of motion to show that the particle velocity of the plane wave in 1 e is parallel to the propagation direction of this plane wave.

1 g . Consider a two-dimensional monochromatic homogeneous plane wave $p(x, z, t)=p_{0} \cos \left[\omega_{0}\left(t-s_{x} x-s_{z} z\right)\right]$. The propagation direction of the wave makes an angle α with the z-axis. Express s_{x} and s_{z} in terms of α and c. Give expressions for the wavelength λ as well as the wavelengths λ_{x} and λ_{z} along the x - and z-axes.

2a. Consider the linearized equations of continuity and motion for a source-free medium, with $\rho=\rho(z)$ and $K=K(z)$. Apply a temporal and 2D spatial Fourier transform to these equations, from the $(x, y, z, t)-$ domain to the $\left(k_{x}, k_{y}, z, \omega\right)$-domain.

2b. Eliminate \tilde{V}_{x} and \tilde{V}_{y} from the results of 2a and reorganize into $\frac{\partial \tilde{\vec{Q}}}{\partial z}=\tilde{\mathbf{A}} \tilde{\vec{Q}}$, where $\tilde{\vec{Q}}=\binom{\tilde{P}}{\tilde{V}_{z}}$ and $\tilde{\mathbf{A}}$ is a 2×2 matrix. Give an expression for $\tilde{\mathbf{A}}$.

2c. The eigenvalue decomposition of $\tilde{\mathbf{A}}$ is given by $\tilde{\mathbf{A}}=\tilde{\mathbf{L}} \tilde{\mathbf{\Lambda}} \tilde{\mathbf{L}}^{-1}$, with $\tilde{\mathbf{L}}=\left(\begin{array}{cc}1 & 1 \\ \frac{k_{z}}{\omega \rho} & -\frac{k_{z}}{\omega \rho}\end{array}\right)$. Give expressions for $\tilde{\boldsymbol{\Lambda}}, \tilde{\mathbf{L}}^{-1}$ and k_{z}.

2d. Substitute $\tilde{\vec{Q}}=\tilde{\mathbf{L}} \tilde{\vec{D}}$ into $\frac{\partial \tilde{\vec{Q}}}{\partial z}=\tilde{\mathbf{A}} \tilde{\vec{Q}}$. The result can be reworked into $\frac{\partial \tilde{\vec{D}}}{\partial z}=\tilde{\mathbf{B}} \tilde{\vec{D}}$. Give an expression for $\tilde{\mathbf{B}}$.

2e. Define $\tilde{\vec{D}}=\binom{\tilde{P}^{+}}{\tilde{P}^{-}}$. Rewrite $\frac{\partial \tilde{\vec{D}}}{\partial z}=\tilde{\mathbf{B}} \tilde{\vec{D}}$ as a system of scalar equations for \tilde{P}^{+}and \tilde{P}^{-}. What do these equations mean?

2f. Consider an interface at $z=z_{1}$ between two homogeneous half-spaces, with medium parameters c_{u} and ρ_{u} in the upper half-space, and c_{l} and ρ_{l} in the lower half-space. Give the boundary conditions at $z=z_{1}$ for $\tilde{\vec{Q}}$ and for $\tilde{\vec{D}}$.

2g. Assume a plane wave $\tilde{P}_{u}^{+}(z)$ is incident to the interface from above. For the reflected and transmitted waves we write $\tilde{P}_{u}^{-}\left(z_{1}\right)=\tilde{R}^{+}\left(z_{1}\right) \tilde{P}_{u}^{+}\left(z_{1}\right)$ and $\tilde{P}_{l}^{+}\left(z_{1}\right)=\tilde{T}^{+}\left(z_{1}\right) \tilde{P}_{u}^{+}\left(z_{1}\right)$, respectively. Use the boundary condition for $\tilde{\vec{D}}$ to derive expressions for the reflection and transmission coefficients $\tilde{R}^{+}\left(z_{1}\right)$ and $\tilde{T}^{+}\left(z_{1}\right)$.

3a. Substitute $\vec{Q}=P^{A}\left(\frac{1}{\rho^{B}} \nabla P^{B}\right)-P^{B}\left(\frac{1}{\rho^{A}} \nabla P^{A}\right)$ into the theorem of Gauss $\oint_{\mathbb{S}} \vec{Q} \cdot \vec{n} \mathrm{dS}=\int_{\mathbb{V}} \nabla \cdot \vec{Q} \mathrm{~d} \mathbb{V}$ and use this to derive a general reciprocity theorem between two acoustic states A and B in the space-frequency domain. (Hint: use the Fourier transform of the wave equation derived in 1 c for states A and B).

3b. Let $K^{A}=K^{B}$ and $\rho^{A}=\rho^{B}$. Show how the general reciprocity theorem of 3 a can be used to derive reciprocity between a source and a receiver, i.e., $P^{B}\left(\vec{r}_{A}, \omega\right)=P^{A}\left(\vec{r}_{B}, \omega\right)$.

3c. Consider again the reciprocity theorem of 3a. Choose for state A the causal Green's state [hence, $P^{A}(\vec{r}, \omega) \rightarrow G\left(\vec{r}, \vec{r}_{A}, \omega\right)$ etc], and choose for state B the actual state [hence, $P^{B}(\vec{r}, \omega) \rightarrow P(\vec{r}, \omega)$ etc]. Derive an expression for $P\left(\vec{r}_{A}, \omega\right)$ of the form $P\left(\vec{r}_{A}, \omega\right)=\oint_{\mathbb{S}}(\cdot \cdot) \cdot \vec{n} \mathrm{~d} \mathbb{S}$. Discuss the result.

3d. Let \mathbb{S} consist of a horizontal plane \mathbb{S}_{0} at $z=z_{0}$ and a half-sphere \mathbb{S}_{1} with infinite radius in the lower half-space $z>z_{0}$. Make a picture of the configuration and modify the result of 3 c for this configuration.

3e. We use the result of 3 d as a starting point for deriving a one-way Rayleigh integral. Substitute $P(\vec{r}, \omega)=P^{+}(\vec{r}, \omega)+P^{-}(\vec{r}, \omega)$ and $G\left(\vec{r}, \vec{r}_{A}, \omega\right)=G^{-}\left(\vec{r}, \vec{r}_{A}, \omega\right)$ at $z=z_{0}$. You may use the shorter notation $P=P^{+}+P^{-}$and $G=G^{-}$.

3f. Assume that the medium is laterally invariant at $z=z_{0}$. Rewrite the result of 3 e as integrals along k_{x} and k_{y}, using Parseval's theorem $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(x, y) B(x, y) d x d y=\left(\frac{1}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{A}\left(-k_{x},-k_{y}\right) \tilde{B}\left(k_{x}, k_{y}\right) d k_{x} d k_{y}$. 3g. Substitute the one-way wave equations $\frac{\partial \tilde{P}^{ \pm}}{\partial z}=\mp j k_{z} \tilde{P}^{ \pm}$and $\frac{\partial \tilde{G}^{\prime-}}{\partial z}=j k_{z} \tilde{G}^{\prime-}$ at $z=z_{0}$. Simplify the result as much as possible.

3h. Substitute again the one-way wave equation $j k_{z} \tilde{G}^{\prime \prime}=\frac{\partial \tilde{G}^{\prime-}}{\partial z}$ at $z=z_{0}$. Use Parseval's theorem to rewrite the result as integrals along x and y. Discuss the result.

