'Advanced reflection seismology and seismic imaging' (AES 1560)

November 7, 2011

1a. Consider the wave equation in spherical coordinates for a homogeneous medium

$$
\frac{\partial^{2} p}{\partial r^{2}}+\frac{2}{r} \frac{\partial p}{\partial r}-\frac{\rho}{K} \frac{\partial^{2} p}{\partial t^{2}}=0, \quad \text { for } \quad r \neq 0
$$

A solution is $p(r, t)=\frac{u(t-r / c)}{r}$. Explain this solution in physical terms. Express c in terms of ρ and K.

1b. Show that $p(r, t)=\frac{u(t-r / c)}{r}$ is indeed a solution of the wave equation (for $r \neq 0$).

1c. In Cartesian coordinates the Green's function $g\left(\vec{r}, \vec{r}_{A}, t\right)$ in a homogeneous medium obeys the wave equation

$$
\nabla^{2} g\left(\vec{r}, \vec{r}_{A}, t\right)-\frac{\rho}{K} \frac{\partial^{2} g\left(\vec{r}_{,} \vec{r}_{A}, t\right)}{\partial t^{2}}=-\rho \delta\left(\vec{r}-\vec{r}_{A}\right) \delta(t) .
$$

Give the causal solution $g\left(\vec{r}, \vec{r}_{A}, t\right)$ and the anticausal solution $\hat{g}\left(\vec{r}, \vec{r}_{A}, t\right)$ for a homogeneous medium. Also give the relation between these solutions.
(1d.) Derive the temporal Fourier transforms of $g\left(\vec{r}, \vec{r}_{A}, t\right)$ and $\hat{g}\left(\vec{r}, \vec{r}_{A}, t\right)$. Give the relation between $G\left(\vec{r}, \vec{r}_{A}, \omega\right)$ and $\hat{G}\left(\vec{r}, \vec{r}_{A}, \omega\right)$.

1e. The Kirchhoff-Helmholtz integral is given by

$$
P\left(\vec{r}_{A}, \omega\right)=\oint_{\mathbb{S}} \frac{1}{\rho}\left[G\left(\vec{r}, \vec{r}_{A}, \omega\right) \frac{\partial P(\vec{r}, \omega)}{\partial n}-\frac{\partial G\left(\vec{r}, \vec{r}_{A}, \omega\right)}{\partial n} P(\vec{r}, \omega)\right] d \mathbb{S} .
$$

Discuss this expression.

1f. Subdivide \mathbb{S} into a horizontal surface \mathbb{S}_{0} at $z=z_{0}$ and a hemisphere \mathbb{S}_{1} in the lower half-space. Derive the Rayleigh-I and Rayleigh-II integrals. Hint: use boundary condition $\partial G / \partial z=0$ or $G=0$ at $z=z_{0}$.

1g. Show that for a homogeneous medium the Rayleigh-II integral can be written as a spatial convolution, according to

$$
P\left(x_{A}, y_{A}, z_{A}, \omega\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W\left(x_{A}-x, y_{A}-y, z_{A}, z_{0}, \omega\right) P\left(x, y, z_{0}, \omega\right) \mathrm{d} x \mathrm{~d} y
$$

Give the relation between W and the Green's function G.

2a. Consider the linearized equation of continuity

$$
\nabla \cdot \vec{v}(x, y, z, t)+\frac{1}{K(z)} \frac{\partial p(x, y, z, t)}{\partial t}=\frac{\partial i_{v}(x, y, z, t)}{\partial t}
$$

and the linearized equation of motion

$$
\nabla p(x, y, z, t)+\rho(z) \frac{\partial \vec{v}(x, y, z, t)}{\partial t}=\vec{f}(x, y, z, t)
$$

Transform these equations to the space-frequency domain (that is, to the (x, y, z, ω)-domain).

2b. Transform the equations to the wavenumber-frequency domain (that is, to the (k_{x}, k_{y}, z, ω)-domain).

2c. Derive the two-way wave equation

$$
\frac{\partial \tilde{\vec{Q}}}{\partial z}=\tilde{\mathbf{A}} \tilde{\vec{Q}}+\tilde{\vec{S}}, \quad \text { where } \quad \tilde{\vec{Q}}\left(k_{x}, k_{y}, z, \omega\right)=\binom{\tilde{P}\left(k_{x}, k_{y}, z, \omega\right)}{\tilde{V}_{z}\left(k_{x}, k_{y}, z, \omega\right)}
$$

2d. The eigenvalue decomposition of $\tilde{\mathbf{A}}$ is $\tilde{\mathbf{L}} \tilde{\Lambda} \tilde{\mathbf{L}}^{-1}$. Give expressions for $\tilde{\mathbf{L}}, \tilde{\mathbf{\Lambda}}$ and $\tilde{\mathbf{L}}^{-1}$.

2e. Substitute $\tilde{\vec{Q}}=\tilde{\mathrm{L}} \tilde{\vec{D}}$ and the eigenvalue decomposition of $\tilde{\mathrm{A}}$ into the two-way wave equation and derive the one-way wave equation

$$
\frac{\partial \tilde{\vec{D}}}{\partial z}=\tilde{\mathbf{B}} \tilde{\vec{D}}+\tilde{\vec{S}}^{\prime}(z), \quad \text { where } \quad \tilde{\vec{D}}\left(k_{x}, k_{y}, z, \omega\right)=\binom{\tilde{P}^{+}\left(k_{x}, k_{y}, z, \omega\right)}{\tilde{P}^{-}\left(k_{x}, k_{y}, z, \omega\right)}
$$

2f. Rewrite this one-way wave equation into two coupled scalar one-way wave equations for \tilde{P}^{+}and \tilde{P}^{-}. Show that for a homogeneous, source-free medium, these equations decouple into independent one-way wave equations for \tilde{P}^{+} and \tilde{P}^{-}.

2g. From the one-way wave equation for \tilde{P}^{+}, derive the following expression for forward wave field extrapolation:

$$
\tilde{P}^{+}\left(k_{x}, k_{y}, z_{A}, \omega\right)=\tilde{W}^{+}\left(k_{x}, k_{y}, z_{A}, z_{0}, \omega\right) \tilde{P}^{+}\left(k_{x}, k_{y}, z_{0}, \omega\right) .
$$

2 h . Discuss the relation between the expressions in questions 1 g and 2 g .

3a. Suppose there is a point source at $(x, y, z)=\left(0,0, z_{s}\right)$ in a homogeneous subsurface and that we measure the response of this at the free surface $z=z_{0}$. Would you measure $P\left(x, y, z_{0}, \omega\right)$ or $V_{z}\left(x, y, z_{0}, \omega\right)$ or both? Why? What type of instruments do you need for these measurements?

3b. Give an expression by which you can obtain the upgoing wave field $\tilde{P}^{-}\left(k_{x}, k_{y}, z_{0}, \omega\right)$ from these measurements.

3c. Next we want to extrapolate the wave field $P^{-}\left(x, y, z_{0}, \omega\right)$ from the acquisition level $\left(z_{0}\right)$ to the source level $\left(z_{s}\right)$. Explain why we cannot use the expression derived in question 1 g .

3d. The operator we need for inverse extrapolation we call $F^{-}\left(x, y, z_{s}, z_{0}, \omega\right)$. Give a formal relation between $F^{-}\left(x, y, z_{s}, z_{0}, \omega\right)$ and the forward operator $W^{-}\left(x, y, z_{0}, z_{s}, \omega\right)$.

3e. Transform the answer from 3d from the space-frequency domain to the wavenumber-frequency domain. Give expressions for $\tilde{W}^{-}\left(k_{x}, k_{y}, z_{0}, z_{s}, \omega\right)$ and $\tilde{F}^{-}\left(k_{x}, k_{y}, z_{s}, z_{0}, \omega\right)$.

3f. Give an expression for a stable approximation $\left\langle\tilde{F}^{-}\left(k_{x}, k_{y}, z_{s}, z_{0}, \omega\right)\right\rangle$. Derive from this an expression for $\left\langle F^{-}\left(x, y, z_{s}, z_{0}, \omega\right)\right\rangle$.

3 g . Inverse extrapolation is now defined as $\left\langle F^{-}\left(x, y, z_{s}, z_{0}, \omega\right)\right\rangle * P^{-}\left(x, y, z_{0}, \omega\right)$, where $*$ stands for spatial convolution. Recall from 3 a to 3 c that $P^{-}\left(x, y, z_{0}, \omega\right)$ is the upgoing field at z_{0} of a point source at $\left(0,0, z_{s}\right)$. Explain how the inverse extrapolation result is related to this point source.

