Exam ta3440 Petroleum Engineering 22 March 2004

Instructions

- This exam consists of 8 questions, some of which are divided in subquestions. The rating of each question is indicated behind the question in brackets.
- Duration: 3 hours.
- If you cannot answer a sub-question and can therefore not proceed to the next sub-question, guess the answer and proceed anyway.
- State your assumptions and explain your answers.

Questions

- 1. A project team has developed the following two offshore scenarios for a new satelite development from an existing production platform in 70 m waterdepth.
 - 1a) Which scenario would you recommend at an oil price of 23 \$/bbl, and a discount rate of 15%? Use a 40% royalty, a variable Opex of 0.80 \$/bbl and neglect fixed opex and taxes. (1 point)
 - 1b) Both scenarios have the same number of wells, which can all be drilled using a jack-up rig. What may cause the difference in well costs? (½ point)

Time (year)	Drilling costs (\$)	S/S wellheads (\$)	Production (bbl/d)
1	86	20	10,000
2	124	34	30,000
3			28,000
4			21,000
5			15,000
6			10,000
7			6,000

Time (year)	Drilling costs (\$)	Platform (\$)	Production (bbl/d)
1		54	
2	44		10,000
3	62		30,000
4			28,000
5		30,435,013,012	21,000
6	and what he at the		15,000
7	prostupe is 14 MPa	talmoned gaiwoff:	10,000
8		. (100)	6,000

- 2. Consider a well in the centre of a square reservoir and one in the centre of a circular reservoir. Except for their areal shape the reservoirs share the same parameters, including total area. Which well has the highest Productivity Index (P.I.) and why? (½ point).
- 3. When producing a gas reservoir at a constant bottom hole pressure the rate decreases approximately exponentially. Explain this behaviour. (1 point)
- 4. Table 3 gives part of a survey file of a deviated well at a point where the drill string is in tension.
 - 4.a) Calculate the dogleg severity for the two hole sections in Table 3. (½ point)
 - 4.b) In which section do you expect the highest contact forces? Explain your answer. (½ point)

Table 3: Surve	ey file segment	for two hole se	ctions.		Special Control
Inclination (deg)	Azimuth (deg) β	AHD (m)	N (m)	E (m)	TVD (m)
47.47	143.37	2001.31	3006.34	-459.23	1900.12
49.96	145.54	2031.74	2 Dispos	B 2000 Late x	190
50.23	147.91	2060.89		DESCRIBER OF	

5. Figure 1 is a generic representation of the oil formation volume factor as a function of pressure. Explain the shape of the curve. (1 point)

Figure 1: Oil FVF as function of pressure at constant temperature.

- 6. Figure 2 displays the pressure intake curves of a production well for two different tubing sizes.
 - 6a) Initially the pressure in a reservoir is 25 MPa. When the well produces 1000 m³/day, the flowing bottomhole pressure is 24 MPa. What is the Productivity Index? (½ point)

- 6b) The intake pressure curve for the well is shown in the figure, for two tubing sizes (4 ½ and 5 ½ inch). Estimate the initial production rate for each size of tubing? (½ point)
- 6c) It is expected that the pressure in the reservoir will decrease quickly with time. Which size tubing would you choose to install? (½ point)
- 6d) If the PI stays constant, as the reservoir pressure drops, what is the lowest reservoir pressure at which the well will flow, with the chosen size of tubing? (½ point)
- 6e) Give a reason why installing a smaller size tubing can sometimes give a higher flow rate in a well. (½ point)

Figure 2: Pressure intake curves.

- 7. Natural gas with the composition given in Table 4 is produced from a reservoir at a pressure $p_1 = 1470$ psia and temperature T = 95 °F. The gas is stored at a surface storage tank at $p_2 = 2940$ psia. The surface and reservoir temperatures are nearly the same.
 - 7a) Determine the Z factors of the gas under both reservoir and storage tank conditions. Discuss briefly the physical meaning of the change in the Z-factor. (1 point)

Note: If a mixture consists of m components with mole fractions y_i , we can use the following relationships, known as Kay's mixing rules, to obtain the pseudo properties of the mixture:

$$p_{pc} = \sum_{i=1}^{m} y_i p_{c,i}$$
 and $T_{pc,abs} = \sum_{i=1}^{m} y_i T_{c,i,abs}$.

7b) Compute the work needed to bring the gas from the reservoir to the storage tank conditions assuming a linear relationship between the Z-factor and the pressure in the interval p_1 – p_2 . (½ point)

Table 4: Gas prop	perties.			
Hydrocarbon	Weight %	M (g/mole)	Critical Pressure (Bar)	Critical Temperature (K)
methane	88.2	16.04	45.9	191
ethane	8.5	30.07	47.7	305
propane	3.3	44.10	41.5	370
total	100.0			

8. We consider a gas condensate reservoir for which the bottom-hole pressure falls within the two-phase envelop. Sketch and explain the production path in the pressure temperature diagram. Discuss the behavior of the hydrocarbons and the possible implications for the well inflow performance. (1 point)