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1. SCREENING 
 
 
1.1. Introduction 
 
Screening is defined as the separation of a particle population in two or more size fractions using a semi-
permeable surface: the screen deck. It distinguishes itself from stream classification (Chapter 2) by the fact 
that the size separation is not based on differential particle motion in a medium such as air or water. For wet 
processing screening is dominant for cut diameters > 1 mm, while below 1 mm classification is dominant. 
For dry processing this limit is usually higher, up to 5...10 mm. 
 

 
 

Fig. 1.1.1 - Screening at Anglo Coal’s Kleinkopje coal preparation plant, South-Africa [TU Delft]. 
 
The usual objective of screening is to split the particle population into two or more fractions of different size, 
but can be carried out for other reasons as well, such as dewatering or loosening a bed of compacted 
particles. In general screening can be applied for one or more of the following reasons:  
 

• Splitting in several size classes, each intended for a process optimised for that particular size class 
• Classifying into sizes as required by the market (examples: heating coal, gravel, sands) 
• Undersize removal before crushing 
• Recovery of HMS medium solids (drain and rinse screening) 
• Desliming (generally below 0.5 mm) 
• Dewatering 

 
A screen produces a coarse fraction (oversize) and an undersize fraction with fines. The material can be split 
in any desired amount of size fractions by installing screens of decreasing mesh size sequentially. Fig. 1.1.2, 
left, gives a schematic representation of the screening process. The results of screening are not perfect. The 
oversize still contains fines and the undersize still some coarse material, since mesh openings may vary or 
may be damaged. A typical screening result is given by Fig. 1.1.2, right, indicating the size distributions of 
feed, oversize and undersize material. xcr is the critical particle size: the  cut diameter or cut size. It is 
defined as the size of the material that is equally distributed in over- and undersize. Note that in industrial 
screening xcr is typically ≈20% smaller as the aperture size. 
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Eq. 1.2.5 is simplified by taking the logarithmic values of both sides: 
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Because (D-x)/D must be smaller than 1 the right term can be developed in a Taylor series and 
approximately yields: 

2
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⎠
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≈
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xDiri    (1.2.7) 

When we take for x the size of the particles of which 50% remain on top, then it follows with x = x0.5 and ri = 
0.5: 
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With I the number of passage attempts per unit length and assuming a constant I throughout the screen length 
L, then i=IL and Eq. 1.2.9 becomes: 

0.5
1 0.832 Dd D - 
L I

⋅⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

  (1.2.10) 

Consequently, when under- and oversize are sampled at various distances from the feed and we plot d0.5 
against 1/√L, a straight line is obtained and I and D can be determined. I is interpreted as screen index 
(passage trials per meter) and D as a measure for the effective screen opening. When I and D of an 
application are known, i is consequently known and using Eq. 1.2.5 size distribution of under- and oversize 
can be calculated based on a size distribution of another composition. 
 
 
Exercise 1.2.A 
 

 For this exercise you need a computer on which Microsoft Excel is installed. 
 
Re-create figure 1.2.2 by making a table containing ri values for the range of passage trials from 1 to 500 
and for x/D values with an increment of 0.05. Hint: xy in excel is calculated as exp(y*ln(x)).    
 
 
1.3. Screening kinetics 
 
Whitby (1958) did carefully designed experiments determining the amount of undersize as function of time. 
The experiments were carried out batch-wise. The results are generalised in Fig. 1.3.1: 
 

 
 

Fig. 1.3.1 -  Screening regions according to Whitby. 
 
Three different regions are distinguished: 
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Fig. 1.4.2  - Relationship between centrifugal acceleration bs and gravity  

 
bs is the centrifugal acceleration maximum. A single particle can only be thrown upwards when Kv > 1. For 
screening bulk material it is more complicated (mutual friction, moisture, etc.), and Kv should be at least 1.5. 
 
When ψ is the angle between the centrifugal acceleration vector and screen surface then 
 

Ψ = ω · t     (1.4.3) 
 

bs = b · sin(Ψ) = a · ω2 · sin(Ψ)  (1.3.9) 
 
A particle is thrown upward when bs > g · cos(β) and for the value of  Ψ = ΨL for which this happens applies 
 

a · ω2 · sin(ΨL) = g · cos(β)  (1.4.5) 
 

( ) ( )
2

v
a ω 1K K

g cos β cos β
⋅

= = ⋅
⋅

  (1.4.6) 
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L 2

v
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a ω K K
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⋅
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The relationship between ΨL and the throw angle α is shown by Eq. 1.4.8. and Fig. 1.4.3. 
 

α  = 90° - (ψL + β)  (1.4.8) 
 
 
 
 
 
Screen in elevated position 
 
 
Screen in standard position 

Fig 1.4.3 -  Relationship between ψL and α. 
 
 
With the above we are able to calculate α for different combinations of K and β. Besides, the particle 
trajectory and impact location of a thrown particle can be calculated. This means that a, n and β can now be 
adjusted to create optimised screening conditions.  
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Polyurethane screening media (Fig. 1.5.2, l): Panels of typical dimensions (305...610)*(305...915) mm 
and 30...50 mm thickness, with typical apertures of 0.3...100 mm square or slotted 0.3*13 to 20*40. 
The panels are supported by a steel bar frame. Advantage of the modular construction is that only 
worn panels need to be replaced instead of the total  screen deck. Wedged panels exist as well. 
Modular polyurethane decks have a somewhat smaller open area as traditional woven wire decks, 
therefore existing screens may show lower capacity when replacing the deck with PU panels.  

Rubber screening media: Applied for heavy duty primary dry screening (absorption of impact) and for 
fine screening of moist feed, to prevent blinding and pegging (E.g. dry fines screening of ROM 
coal). Can be mounted in the same modular PU panels, rubber and PU can also be combined in a 
single screen, the rubber panels absorbing the impact at the feed end.   

 

 
Fig. 1.5.2  - PU Modular deck (l). Detail of wedge-wire deck cross-cut (r) [SACPC / Wills]. 
 
 
1.6. Screening efficiency 
 
1.6.1. Efficiency parameters 
 
Screening efficiency can be expressed in various ways, depending on the objectives of  the operation. For 
coarse fractions the efficiency E can be expressed as: 

1 1

v v

g GE 100
g G

= ⋅   (1.6.1) 

G1 is the mass of the oversize and g1 and gv are the mass percentages coarse material in the oversize and in 
the feed Gv. For fines a similar expression applies. However, Eq. 1.6.1 does not fully express the screening 
result. An expression is needed that includes behaviour of both fractions. Newton’s Classification 
Efficiency, EN, is the most complete. Using the following symbols: 
 

Fractions 
 mass % coarse % fine

feed Gv gv fv

oversize Gg gg fg

undersize Gf gf ff

 

( ) ( ) ( )
( )

v f gv f g
n

v v v v

G G 1 gG G g
E 100  - 

G g G 1 g

⎡ ⎤− ⋅ −− ⋅
= ⋅ ⎢ ⎥

⋅ ⋅ −⎢ ⎥⎣ ⎦
  (1.6.2) 

Applying a mass balance, 
( )v v v f g fG g G G g G g⋅ = − ⋅ + ⋅ f     (1.6.3) 

applies and by combining Eq. 1.6.2 and Eq. 1.6.3 we obtain 
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2575 xx

E p
−

=   (1.6.7) 

A disadvantage is that Ep depends on the cut-size (x50), hence screening operations at various x50 cannot be 
compared. In these cases the “Imperfection” I can be used: 

50

2575

50 2x
xx

x
E

I p −
==   (1.6.8) 

Other parameters used are the particle spread H: 
75

25

xH
x

=    (1.6.9) 

and the separation sharpness T: 
)tan( 50xT α=    (1.6.10) 

Where α is the angle of the curve at d50. It should be realised that the Ep or other parameters obtained from 
the Tromp curve are not a screen characteristic, but rather indicate the efficiency of a particular screening 
operation, since besides screen design and vibration, factors like overload, feed size distribution, moisture 
content etc. have a pronounced effect. Tromp curves and its related efficiency parameters Ep and I are also 
used for monitoring density separation by replacing the size axis by a density axis. 
 
 
1.7. Screening capacity 
 
When comparing two screens of mesh sizes D1 and D2, the number of mesh openings is inversely 
proportional to the mesh size squared. Assuming that for both screens the same number of particles passes 
per unit of time, the masses of the two particlesa relate to (mesh size)3. As a consequence, screening capacity 
is proportional to mesh size. Therefore capacity is expressed in tonnes per m2 and per mm mesh size. It 
explains why in ore processing screening below 0.2 mm is rarely economic. For dry coal screening this limit 
is about 5 mm, but can be as smaal as 1 mm occasionally.  
 
The capacity C of a vibratory screen can be estimated with the empirical expression: 

0.6ρC 1.4 D
γ

= ⋅ ⋅   (1.7.1) 

with C the capacity in t/hr.m2, ρ the material (solid) density in g/cm3, D mesh size in mm, and γ the fraction 
of feed particles having 0.5D < x < 1.5D. Eq. 1.7.1 corresponds to an efficiency for the problematic fraction 
(0.5D < x < D) of approximately 90%. The application of Eq. 1.7.1. is limited to: 
 

• Square mesh openings of a deck with at least 50% open surface. 
• γ < 15% (otherwise transport becomes a delimiting factor) 
• 0.5 mm < (mesh size) < 250  mm 

 
Moisture has a major effect on capacity. levels between 8% and 10% reduce capacity down to 0.8C, while 
efficient spraying may increase it up to 1.25C. More empirical expressions are available in the literature 
(Schubert, 1986). 
 
 
1.8. Screening equipment 
 
Numerous screen types exist. Grizzlies (for coarse material) and sieve bends (for fines) are stationary 
screens. Roller screens, trommel screens, reciprocating screens and vibrating screens are based on motion of 
the screen deck to improve screening kinetics. An overview is given in Fig. 1.8.1. Of the different screen 
types, vibrating screens are the most important group. Screens are further subdivided according to deck type 
(Section 1.5).  
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Single excenters are used for any size range, having typical amplitudes of 1.5...5 mm and frequencies of 
1200...2000 min-1. Single unbalance drives have a frequency 3...5 times the resonance frequency of the 
screen. Typical amplitudes are 1.5...7.5 mm and frequencies 750...2000 min-1. The amplitude is easily 
modified by adjusting the excenter weight. Typical screen sizes are 50...1 mm. The advantage of circular 
motion is the self cleaning effect: a particle stuck into the mesh experiences forces in all directions 
promoting its loosening. The transport velocity depends on the inclination of the screen, which in general is 
not easily adjusted.    
 
Elliptical motion screens combine the advantages of linear and circular motion. Elliptical motion is effected 
by a single unbalance motor and a specific spring configuration, or alternatively by an arrangement of three 
unbalance motors. Below a more detailed description of the most common vibrating screens, cited from 
[SACPC]: 
 
Linear motion horizontal screen (Fig. 1.8.5, l): Linear motion (sometimes known as straight line motion 
horizontal screens) are today the most common and consist of a horizontal screen deck, a drive (being either 
excitors or vibrator motors) and vertical side plates, all mounted on isolators. The screen can be suspended or 
root mounted to suit the plant layout. The most commonly used isolators are coil springs, rubber buffers, air 
fides and Rosta mounts. The screening action is derived from two counter-rotating, eccentric, out-of-balance 
masses that lift particles off the screen deck at a predetermined angle, in a straight line, and then drop them 
vertically back onto the screen deck (Fig. 1.8.5, r). This "zigzag" action conveys the material down the 
screen deck at a constant velocity determined by the angle of the drive, the G-force and the speed of the 
drive. 
 
Normally the drive is at 45° to the screen deck, which means that a particle will be lifted in a straight line at 
45° for the length of the stroke and then dropped vertically onto the screen deck. The stroke length will 
determine the frequency that a particle will make contact with the screen deck and have an opportunity to 
pass through the apertures, and also the velocity that the material will move along the screen length. This is 
one of the reasons why the relationship between aperture size and stroke is so important. If the stroke is too 
long in relation to the aperture size, the frequency with which particles contact the screen deck could be 
insufficient, resulting in carry over of undersize and poor efficiency. To change the velocity of material 
moving over a linear motion horizontal screen where the speed of the drive and G force are fixed, the deck 
can be inclined up to a maximum of 7° or down by 10°. This will result in an increase or decrease in 
retention time on the screen deck. An increase in retention time will also, however, increase the material 
discharge bed depth, which could also result in poor stratification if the discharge bed depth is greater than 4 
times the aperture size. The converse is also true, if the velocity increases too much and the discharge bed 
depth reduces below 2 -3 times the aperture size, particles are not held down on the screen deck and will tend 
to bounce, resulting in a decrease in efficiency. 
 
Linear motion horizontal screens are normally used on secondary or tertiary applications where the 
maximum aperture size is limited to approximately 45mm and the particle size to l50mm. The reason for this 
is that the maximum stroke achievable at 5 G's is approximately 18 mm, which is about the minimum length 
required for an aperture size of 45 mm The minimum stroke achievable is between 2-4 mm and the minimum 
aperture size is 0.3 mm, achieved using 4 pole motors rotating at 1440 RPM. The most common applications 
are sizing, dewatering, desliming, and drain & rinse. 
 
Linear motion inclined screens also use twin counter rotating drives (excitors or vibrator motors, Fig. 
1.8.5) but they are positioned at 9 o'clock and 3 o'clock, which results in the material being lifted vertically 
off the screen deck. For forward motion, the screen has to be inclined downwards a minimum of 15°. The 
inclination can be varied between 15° and 28° down. The different inclinations, at the same stroke, will 
increase or decrease the forward velocities accordingly. This type of screen will otherwise operate in the 
same way as a linear motion horizontal screen. A typical application would be for sizing materials up to an 
aperture size of 45 mm. The main reason for installing a linear motion inclined screen instead of a linear 
motion horizontal screen is that with the increased velocity of the inclined screen, higher throughputs can be 
achieved for the same screen size. 
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Fig. 1.8.6  - Multi-slope or “Banana” screen for ROM coal with steel and PU modular deck 
elements [Multotec / SACPS]. 

 
Linear motion multislope screen or “Banana” screen (Fig. 1.8.6): Linear motion multislope screens have 
the same drive action as linear motion horizontal screens but the screen deck consists of a number of sloped 
sections. Typically the top slope will be at 30 to 35° and the bottom slope 10 to 15°. Screens vary from 
between two and six slopes depending on the particle size and screening application. The major reason for 
using multislope screens in place of horizontal or inclined screens is to size large volumes of material with a 
high percentage of fines in the feed (60% and above). The higher material velocities, especially over the first 
two slopes of the screen, reduce the material bed depths allowing good stratification and the efficient 
removal of fines. Typically 60 % of the fines are removed in the first third of the screen. They can also be 
used in drain and rinse applications where static sieve bends are removed and replaced with a vibrating 
screen section which will handle the drainage function efficiently, followed by draining and rinsing on the 
almost horizontal sections. Dewatering applications can also be handled with the top slope being at 
approximately 20° down and the last slope inclined at 5° up. 

 

Fig. 1.8.7  - Horizontal (l) vs multislope (r) – comparative screen performance and product flow [SACPS]. 
 
Circular motion inclined screen: Circular motion inclined screens have the drive situated on the centre of  
gravity of the screen. The drive consists of a single eccentric mass rotating clockwise or anti-clockwise 
depending on the required retention time. The screen is inclined at between 15°...28° down and is varied to 
suit the required throughput, retention time and screening efficiency. The rolling action of circular motion 
allows for screening at much larger aperture sizes, up to approximately 250 mm being possible. These types 
of vibrating screens are normally used only for primary and secondary screening applications.  
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The drive will normally rotate in a clockwise direction allowing the maximum forward velocity and highest 
throughputs. However, if carry over of fines occurs, the drive can be reversed, increasing the retention time 
of the material on the screen deck. This can improve screening efficiencies by reducing the carry over of 
fines but with the reduced material velocities, the material bed depth will also increase. This could reduce 
stratification and also decrease screening efficiencies. If this happens, the only alternative is to reduce the 
amount of feed to the screen. Always try and keep the discharge bed depth between 3 and 4 times the 
aperture size to maximize screening efficiencies. 
 
Elliptical motion inclined screen: Elliptical motion inclined screens work on the same principle as circular 
motion inclined screens but their drive is normally situated above or below the centre of gravity of the 
screen. If the eccentric drive is in the clockwise direction, the material initially moves forward in an elliptical 
motion, the material bed depth reducing as undersize passes through the screen apertures. Circular motion is 
experienced underneath the drive followed by a backward elliptical action at the discharge end of the screen, 
which causes the material bed depth to build up. The converse will apply when the drive is in an anti-
clockwise direction. There will be a build up of material feeding onto the screen and a reduction in discharge 
bed depth as the material discharges off the screen. These types of screens are very cost effective as the drive 
is often a single vibrator motor, where a linear motion screen would require two motors. The vibrator motors 
are typically 40% of the cost of a linear motion screen. Even though they are not particularly efficient 
screens they can be used very effectively for sizing applications where the throughput is low. 
 
Resonance screen: Resonance screens also operate using the same linear motion principles as a linear 
motion horizontal screen. With most screens, a lot of energy is used up in vibrating the screen, i.e. they 
require high-power motors. Due to the continuous change in the direction of the motion, much energy is 
wasted. Resonance screens are designed to reduce the energy requirements, allowing lower power motors to 
be used. The screen is mounted on flexible hanger strips, which are connected to a balance frame three or 
four times heavier than the screen itself. The balance frame is mounted on rubber pads. Movement is 
imparted to the screen by an eccentric drive and connecting rod. A rubber pad connects the rod to the screen. 
Rubber trippers restrict the movement of the screen and serve to store up energy, which is re-imparted to the 
screen frame. Hence, any movement given to the screen is transmitted to the balance frame. The throw of the 
balance frame is less than that of the screen because its mass is so much greater. Any motion thus given to 
the balance frame sets up vibrations that, instead of being wasted, are imparted back to the screening frame. 
Thus the loss of energy is reduced to a minimum. In certain types of resonance screen, the deck movement is 
restricted by a series of stops, which are attached to the deck and operate between buffers attached to the 
frame. In addition to storing energy, the sharp return motion of the deck imparts a lively action to the deck 
and hence promotes good screening. 
 
Modular screen: The modular screen is a recent innovation in screening technology. It consists of a number 
of small linear motion screen modules, each consisting of two internal chassis plates, a twin vibrator motor 
drive, polyurethane screening media and mounted on Rosta-type isolation mounts. The modules can be 
placed side by side or in front of each other to form a screen of any size. Stresses are confined to each 
individual module and thus there is no limitation on screen dimensions. The modules can perform any 
normal screen duty associated with linear motion, horizontal or multislope configurations. In addition, they 
are lighter, use less power and are easier to maintain than conventional screens of a similar size. 
 
Omni screen: Another new screen on the market is the Omni screen, which also uses the modular screen 
concept. It consists of single or double deck modules that have the drives positioned on the outside of the 
screen plates. The modules vary in width from 1.5 m to 3.05 m wide and 2.44m to 3.05m long. Modules are 
linked together in length to make up screens of whatever size is required. The advantage of this design is that 
it uses linear motion and the modular sections can be either horizontal or inclined to form multislope type 
screens. 
 
Multi-deck screens: Some screens are equipped with more than one deck, and are known as double or triple 
deck screens, depending upon the number of decks they have. Double deck screens have two different  
aperture sizes of screen media. The larger aperture media is fitted above the smaller - such double-decked 
screens are used for pre-screening. Another use is dewatering. The meshes will be of the same order, hence 
the top deck helps to dewater the larger material and also screens a plus 12 mm (or 5 mm as the case may be) 
product. Consequently the top deck relieves the bottom deck resulting in the bottom deck being more lightly 
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As already mentioned in Section 2.7 the efficiency of screening is severely affected by moisture content. 
Already 1 Vol. % moisture may strongly deteriorate the efficiency, due to the formation of water bridges 
between particles, leading to agglomeration. This causes blinding and the excessive adherence of fines to the 
oversize. At a certain moisture percentage the point with “maximum stickiness” has been reached. From this 
point, adding water or drying makes screening easier. For coal this point is on average around 10%, for 
coarse coal only 1...2% but for fines up to 15...20%. For most rock and ore types the percentages are smaller, 
depending on rock density compared to coal. For a fair amount of clay being present the stickiness shows 
variations. In practical terms below 5 mm blinding problems may cause difficulties  in industrial screening of 
moist feed, but applications downto 1 mm using special screen types are known. When screening moist feed 
is necessary, the problems can be relieved by: 
 

• Increase the forces on the particles (increase Kv).  
• Drying of the feed (needs lots of energy and an additional process step) 
• Adding water to the feed (unfavourable if downstream dewatering and drying of the products is 

required) 
 
Screens of high frequency and low amplitude are employed for dry applications. A typical ROM coal already 
contains 5...10% moisture due to dust spraying. For coal industrial dry screening is not employed below 6 
mm. Some machines handle a moist feed rather well, without the need for adding water or drying. They are 
listed below: 
 

Heated-deck screens: Stickiness is reduced by heating the mesh by electric currents. 
Piano-wire decks: Individually tensioned pieces of piano-wire in the direction of flow avoid bridge 

formation by vibration of the wire. Harp screens, duo-sieves etc. have a corrugated wire shape and 
rely on the same principle.  

Sta-Kleen decks: Captive rubber balls are mounted below a standard mesh. As the screen vibrates, the 
balls strike the mesh and destroy any bridges. 

Probability screens: Normal screens have an aperture that is already ≈20% more than the effective cut-
point. In probability screening apertures even considerably larger than the required cut-point are 
used. The apertures are staggered, so finally only small particles will pass all decks and report in the 
undersize. An example is the Mogensen Sizer (Fig. 1.8.9, l), having typically 5 staggered screen 
decks of decreasing aperture, all considerably larger than the cut-point. The staggering of decks are 
the reason that large particles tend to catch a screen wire and be deflected rather than pass an 
aperture, and let it report in the oversize even though the aperture would normally allow passage. 
Only particles small enough will finally pass all decks. Cut sizes can be between 50...0.1 mm. 
Another example of a probability screen is NCB’s  rotating probability screen, where the rotation 
speed of a disc with radial orientated rods in fact determines cut-size (Fig. 1.8.9, r). It was especially 
developed for dry fines pre-screening of ROM moist coal, a 2.4 m diameter disc having a capacity of 
≈100 t/h for a <19 mm feed and cut-size of 4 mm. 

Liwell Flip-Flow (or Hein Lehmann) screening machine (Fig. 1.8.10, l). It consists of two screen cases 
encased in each other. They are counter current wise oscillated. An elastic, wear resistant deck is 
alternately connected to the screen via cross beams, causing alternately tensioning and detensioning 
of the deck at 500...700 min-1, leading to a trampoline-like screening action. The high acceleration 
forces prevent any pegging and blinding. It screens moist and sticky feed effectively.  
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  (2.2.12) 

Equations for the other flow regions can easily be obtained by substitution of the appropriate equation for f 
in Eq. (2.2.11). 
 
In systems where centrifugal acceleration is present rather than gravitational acceleration, the equations can 
be rewritten by replacing the gravitational acceleration g by the centrifugal acceleration ω2r, where r is the 
radius of rotation and ω the angular velocity. 
 
 
Example 2.2.1 

 
What will be the setting velocity of a 0.4 mm spherical steel particle with density 7870 kg/m3? The 
oil density is 820 kg/m3 and the viscosity 0.01 Ns/m2. 
 
Solution: 
 

ν 0

3 21
18

0 4 10 7870 820 9 81
0 01

0 061=
−

=
−( . * ) ( ) .

.
. m s  

 
Check: 
 

Re * . * . *
.

.= = =
−ρν

μ
0

3820 0 061 0 4 10
0 01

2 0d
 

 
hence the flow conditions are laminar. 
 

 
Example 2.2.2 

 
A spherical sand particle with density 2750 kg/m3 settles freely in water. If the particle Reynolds 
number is 0.1, calculate the particle diameter. The viscosity of water is 0.001 Ns/m2, the density 
1000 kg/m3. 
 
Solution: 
Using Eq. (2.2.12) gives: 
 

ν 0

2
5 21

18
2750 1000 9 81

0 01
9 5410=

−
=

d d m s( ) .
.

.  

 
The Reynolds number then becomes: 
 

Re * . * *
.

.= =
1000 9 5410

0 001
01

5 2d d
 

 
from which d = 4.76 10-5 m. 
 

In many cases, the flow regime is not known at the start of the calculation. If it is not known whether the 
flow is laminar, turbulent or in the transition zone, the terminal falling velocity can  
be found by computing 

   Re (Re)
( )

(2
2

2

3

2
2 4

3
f d

A
F

d g
sphered

f s f= =
−ρ

μ
ρ ρ ρ

μ
)  (2.2.13) 
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   f K
=

Re
      (2.2.15) 

The constant K varies somewhat according to the shape and orientation of the particle, but always has a 
value of about 24. 
 
In this region, a particle falling freely under the action of gravity, will normally move with its longest surface 
parallel to the direction of motion. In the transition region, a freely falling particle will tend to change its 
orientation as the value of the Reynolds number changes and some instability may be apparent. In the 
turbulent region, the particle will tend to fall so that it is presenting the maximum possible surface to the 
oncoming fluid. Typical values of f in this region are shown in Table 3.2.1. 
 
 Table 2.2.1 - Friction coefficient for non-spherical particles [Coulson & Richardson]. 
 

 Thin rectangular plates, planes perpendicular to direction of motion 
 length/width =  1-5  f =1.2 
      20  1.5 
     infinity 1.9 
 
 Cylinders with axes parallel to the direction of motion 
 length/diameter =  1 f =0.9 
 
 Cylinders with axes perpendicular to the direction of motion 
 length/diameter =  1 f =0.6 
              5 0.7 
          20 0.9 
               infinity 1.2 
 

 
It should be noted that the friction coefficients for non-spherical particles are higher than the value 0.44 for a 
spherical particle. 
 
 
2.2.3 Other correction factors 
 
A number of other factors may have to be considered when treating the flow of particles through a fluid. The 
most important one is hindered settling, which will be discussed in a later chapter. Although generally not 
important in full size operations, a wall effect may be significant in laboratory testing. This problem arises 
because the moving particle pulls fluid along with it, and in the vicinity of the stationary wall, the fluid 
movement is slowed, resulting in an apparent increase in drag coefficient. 
 
The drag forces computed with formula 3.2.2 relate to steady motion, i.e. the particles are assumed to have 
constant speed. If the particles are accelerated, the difference between the gravity and buoyant force on the 
one hand and the drag force on the other is used for the acceleration of the particle and part of the fluid 
around it: 
     (2.2.16) F F F m a mg b d p f+ − = + a
 
where mp = mass of particle 
 mf = mass of accelerated fluid (added mass) 
 
For laminar flow and spherical particles the volume of the fluid that is accelerated amounts to half the 
volume of the particle. 
 
 
2.2.4 Fluidisation and sedimentation 
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Fig. 2.4.2 - Classifier with spinning distribution table and internal air circulation (l) and external 
circulation (r). A=feed, K1=coarse, K2=fine [Humboldt Wedag / Schubert Vol. I]. 

 
In classifiers of the type shown in Fig. 2.4.2 the feed is added from a rotating table into the air. The 
separation principle is very much similar to a cross flow classifier. The cut size can be modified by changing 
the rotation speed and the design of the spinning table. Fig. 2.4.2, left, shows internal air circulation, right 
external air circulation with cyclones. The advantage of the latter configuration is better control and higher 
separation sharpness. They are frequently applied in dry grinding circuits for cement clinker and for fine coal 
classification. Typical cut sizes are 0.05...0.6 mm at sharpness 1.5<Ep<3.0. The largest air classifiers for 
ground cement clinker have diameters up to 8 m at capacities of about 500 t/h. Table 2.4.1 shows typical data 
regarding applications in cement and coal classification. 
 
Table 2.4.1 - Capacity data of typical sifter applications [Schubert Vol. 1]. 
 

Cement Cut size ≈90μm, 60%<90μm  
Sifter diameter [m] Capacity [t/h] Power draw [kW] 

1.5 5...6 4...6 
2.5 15...20 7...15 
3.5 30...60 20...40 
5.0 50...120 50...75 

  
Coal Cut size 500μm, ≈25%<500μm  

Sifter diameter [m] Capacity [t/h] Power draw [kW] 
1.5 ≈14 ≈6 
2.5 ≈75 ≈16 
3.5 ≈150 ≈30 

 
Besides the basic designs described above numerous other designs are applied, specifically designed for 
certain types of material and classification objectives.  
 

 
 
Fig. 2.4.3 – Centrifugal classifier (“deduster”) for raw small coal can handle dry as well as moist feed 
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2.5. Cyclon
[From Coul

nes 
lson & Richaardson, 1991] 

 
The use of h
by altering o
classifying t
suspension 
are obtained
high. 

hydrocyclon
operating co
than for clari
of the particl
d as suspensi

es has the ad
nditions. As 
ifying. The r
les and oppo
ions of fairly

dvantage of s
opposed to m

reason is that
ose flocculati
y high dilutio

simplicity an
many other t
t the high she
ion. A disadv
on. Moreover

nd flexibility,
types of equi
earing stress
vantage is th
r, the viscosi

, so that the r
ipment, hydr
es in a hydro
at both the c
ity of the flui

results may b
rocyclones ar
ocyclone pro
oarse and fin
id should not

be modified 
re better for 

omote the 
ne fractions 
t be too 

 
 
2.5.1 Centriifugal separaation 
 
The rate of 
employed. I
clean fluid i
cylindrical w

settling in a 
In the cyclon
is taken off t
wall of the v

fluid can be 
ne separator (
through a cen
vessel and are

greatly incre
(Fig. 2.5.1), 
ntral outlet at
e collected in

eased if centr
the fluid is in
t the top. Th
n the conical 

rifugal rather
ntroduced tan
e solids are t
base. 

r than gravita
ngentially in
thrown outw

ational force
nto a cylindri

ward against t

es are 
ical vessel, 
the 

 
 

Fig. 2.5.1 - 
 
This separat
diameter. Th
separator an
component 
highly turbu
of the veloc
separator bu
 
Pressure me
pressure cor
radial direct
tends to car
rotation and
different rad

Schematic d

tor is very ef
he fluid in th

nd then rises 
of the veloci

ulent central 
city acts inwa
ut is in the op

easurements 
rresponding 
tion, the cent
rry the particl
d of the size o
dii. As the ou

 

 

diagram of a 

ffective, unle
he cyclone m
and leaves th
ity of the flu
core of diam

ards, and the
pposite direc

indicate a re
to the centra
trifugal force
le away throu
of the particl
utward force

cyclone sepa

ess the fluid 
moves spirally

hrough the c
id appears to

meter about 0
 axial compo

ction in the c

elatively high
al core. Any p
e which tend
ugh the fluid
les, with the 
e on the parti

43

arator (l) and

contains a la
y downward
central outlet
o predominat
0.4 times that
onent is away
entral core. 

h pressure thr
particle is th

ds to throw it 
d outlet. Both
result that pa
cles increase

d fluid flow(r

arge portion o
, gradually a
t at the top (F
te throughou
t of the fluid 
y from the fl

roughout, ex
erefore subje
to the walls 

h of these for
articles of di
es with the ta

(r) [r: SME]. 

of particles le
approaching t
Fig. 2.5.1, r).
ut the whole d

outlet pipe. 
luid inlet nea

xcept for a re
ected to two 
and the drag

rces are a fun
fferent sizes 

angential velo

 
 

ess than 10 μ
the central p
 The tangent
depth, excep
The radial co

ar the walls o

μm in 
ortion of the
tial 
t within a 
omponent 

of the 

 

egion of redu
opposing for

g of the fluid
nction of the
tend to rotat

ocity and the

uced 
rces in the 

d which 
 radius of 
te at 
e inward 

 



force increases with the radial component, the separator should be designed so as to make the tangential 
velocity as high as possible and the radial velocity low. This is generally effected by introducing the fluid at 
a high tangential velocity and making the height of the separator large. The radius at which a particle will 
rotate within the cyclone corresponds to the position where the net radial force on the particle is zero. The 
two forces acting are the centrifugal force outwards and the frictional drag of the fluid acting inwards. 
 
Let's consider a spherical particle of diameter d rotating at radius r. Then the centrifugal force is: 

3 22 ( )
6
s f tt d umu

r r
π ρ ρ−

=    (2.5.1) 

where m = mass of the particle 
 ut = tangential component of the velocity of the fluid 
 ρs = particle density 
 
lt is assumed that there is no slippage between the fluid and the particle in the tangential direction. If the 
radial velocity is low, the inward radial force due to friction will, from Eq. (2.2.1) be equal to 3πηdur , where 
η is the viscosity of the fluid and ur is the radial component of the velocity of the fluid. The radius r, at which 
the particle will rotate at equilibrium, is then given by: 
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When the density of the particle is large compared with that of the fluid, uo, the free falling velocity of the 
particle, is given by Eq. (2.2.12) as: 
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Substituting in Eq. (2.5.2): 

g
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20 =                               (2.5.4) 

Thus the higher the terminal falling velocity of a particle, the greater the radius at which it will rotate and the 
easier it is to separate. If it is assumed that a particle will be separated provided it tends to rotate outside the 
central core of diameter 0.4d0, the terminal falling velocity of the smallest particle which will be retained is 
found by substituting r = 0.2d0 in Eq. (2.5.4), i.e. 

rg
u
uu

t

r
20 =    (2.5.5) 

 In order to calculate d0, it is necessary to evaluate ur and ut for the region outside the central core. 
The radial velocity ur is found to be approximately constant at a given radius and to be given by the 
volumetric rate of flow of the fluid divided by the cylindrical area for flow at the radius r. Thus if G is the 
mass rate of flow of the fluid through the separator and ρ is its density, the linear velocity in a radial 
direction at a distance r from the centre is given by: 

ρπrL
Gur 2

=                              (2.5.6) 

where L is the length of the separator. 
 
The tangential velocity is found experimentally to be inversely proportional to the square root of the radius at 
all depths. Then if ut is the tangential component of the velocity at radius r, and ut0 is the corresponding value 
at the circumferenee of the separator: 

 44



r
d

uu c
tt 20=    (2.5.7) 

Further it is found that ut0 is approximately equal to the velocity with which the fluid enters the separator. If 
these values for ur and ut are now substituted into Eq. (2.5.5), the terminal falling velocity of the smallest 
particle which the separator will retain is given by: 
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If the cross-sectional area of the inlet is Ai, G = Aiρut0 and: 
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A small inlet and outlet therefore result in the separation of smaller particles, but as the pressure drop over 
the separator varies with the square of the inlet velocity and the square of the outlet velocity, the practical 
limit is set by the permissible pressure drop. The depth and diameter of the body should be as large as 
possible, because the former determines the radial component of the fluid velocity and the latter controls the 
tangential component at any radius. In general, the larger the particles, the larger should be the diameter of 
the separator because the greater is the radius at which they rotate. 
 
Because the separating power of the separator is directly related to the throughput of the fluid, the cyclone 
separator is not very flexible, though its efficiency can be improved at low throughputs by restricting the area 
of the inlet, and hence increasing the inlet velocity. Generally, however, it is better to use a number of 
cyclones in parallel and to keep the load on each approximately the same. 
 
Because the vertical component of the velocity in the cyclone is downwards everywhere outside the central 
core, the particles will rotate at a constant distance from the centre and move continuously downwards until 
they settle in the conical base. Continuous removal of the solids is desirable so that the particles do not get 
entrained again in the fluid stream due to relatively low pressures in the central core. Entrainment is reduced 
to a minimum if the cyclone has a deep conical base of small angle. 
 
Example 2.5.1. 
 

A cyclone separator, 0.3 m in diameter and 1.2 m long, has a circular inlet 75 mm in diameter and an 
outlet of the same size. If the gas enters at 1.5 m/s, at what particle size will the theoretical cut 
occur? 
Viscosity of air 0.018 mNs/m2 
Density of air  1. 3 kg/m3 
Density of particles      2700 kg/m3 
 
Solution:  
 
The cross sectional area Ai = (π/4)(0.075)2 = 4.42*10-3 m2 . The mass flow rate of the gas becomes 
then  

G = 1.5*4.42*10-3 *1.3 = 8.62*10-3 kg/s. 
 
Using Eq. (2.5.9) the free-falling velocity u0 can be calculated: 
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Use is now made of Stokes law (Eq. 2.5.3) to find the particle diameter: 
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2.5.2 Optimmum cyclone dimensions 
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2.5.4 Cyclonne efficiency
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(4) feed and overflow dimensioning 
In general, reduction of the cyclone openings results in a decrease of the separation size. In principle, the 
feed opening should not be larger than 1/3 of the cyclone diameter. For products with low density 
<1500kg/m3) the feed opening should not exceed 1/5 of the diameter. 
 
(5) density of the particles 
The classification of material with a density larger than about 2500 kg/m3 can be calculated according to 
Stokes law, which means that the separation size is inversely proportional to the square root of the density of 
the solids minus the density of the liquid. For example, if a cyclone classifies quartz (density 2650 kg/m3) at 
60 microns, then it will classify magnetite (density 5000 kg/m3) at 

38
10005000
1000265060 =

−
−

 microns 

 
 (6) viscosity of the fluid 
The separation size is proportional to the square root of ν, the kinematic viscosity (ν=ρlη, with ρl the liquid 
density and η the dynamic viscosity). Consequently, a two times higher viscosity gives a 12 times bigger 
particle size of separation. 
 
(7) feed concentration 
At low feed concentrations the separation size remains about constant, but at higher feed concentrations the 
size of separation increases. By recirculating part of the overflow or part of the apex discharge to the feed, 
the size of separation can be effectively influenced. 
 
(8) shape of particles 
The shape of the particles is an important factor in the separation. For the same cyclone, particles with the 
same density, but different shape will be separated at different sizes. For example, disk shaped particles 
which carry a relatively large amount of liquid, behave as if they had a lower density and are therefore 
classified at a coarser size than might be expected from their real density. For this reason it is always 
advisable to carry out a classification test before determining the size of separation. 
 
(9) cyclone efficiency 
The foregoing sections gave a qualitative description of the impact of cyclone parameters on cyclone 
efficiency. However, also more quantitative descriptions exist. Bradley (1965) e.g., lists different equations 
to calculate the cutpoint d50. The oldest one is that of Dahlstrom: 

5.053.0

68.0
0

50 )(
)(7.13

ls

i

Q
dd

d
ρρ −

=    (2.5.15) 

where d50 is the cutpoint (μm), d0 is the overflow diameter (cm), di is the inlet diameter (cm), Q is the total 
flow rate (m3/h), ρs is the specific gravity of the solids and ρl is the specific gravity of the fluid. Equations 
like this one is, however, are not directly applicable to industrial cyclones, since most of the work was 
carried out on dilute slurries using very small diameter cyclones. 
 
Plitt (1976) has developed a mathematical equation for large diameter cyclones operating at high solids 
content. The equation for cut-size is: 
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where d50 is the "corrected" d50 (μm), dc, di, d0 and du are inside diameters of the hydrocyclone, inlet, vortex 
finder and apex, respectively, V is the volumetric percentage of solids in the feed, h is the distance from 
bottom of the vortex finder to the top of the underflow orifice (cm), Q is the flow rate of the feed slurry 
(m3/hr), and ρs and ρl are the density of the solids and liquid respectively (g/cm3). 
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Fig. 3.2.2 - Cross section of “Blake” primary jaw crusher (left) and two jaw geometries (right) [SME]. 
 
An optimised stroke frequency (n, usually expressed in 1/min) is essential for proper operation of a jaw 
crusher. If n is too high, the material has insufficient time to fall downwards. If n is too low, the material 
densifies between the jaws. In both cases capacity will decrease.   

Large primary jaw crushers: n=140 ... 180 min-1, feed opening dimensions: gape<1.8m, width<2.5m, set 
opening <0.4m. Max. capacity <1100 m3/h. 

Medium sized primary crushers: n=180 ... 250 min-1, stroke length 15 ... 25 mm.  
Smaller secondary crushers: n=275 ... 400 min-1, stroke length 10 ... 12 mm. 
 

Jaw crushers may choke when too much material accumulates near the set. For smaller crushers, curved 
plates are applied for a better volume distribution and decreasing nip angle as the material becomes finer 
(Fig. 3.2.2, right). Constant feed rate is needed for proper operation and to prevent choking. A choked jaw 
crusher cannot be started and must be emptied before re-start, which is a labour intensive procedure. 
 
The maximum feed size is approximately (0.8 ... 0.9)G, with G the gape. The width of the feed opening, W, 
is usually >1.6G. Capacity of a crusher is often expressed in m3/h, which is readily expressed in t/h by 
multiplying with the rock density in g/cm3. Capacity is delimited by the smallest cross section at the set, 
which is S*W (S=set). Within certain limits the capacity of the crusher is variable by changing S. Table 3.2.1 
can be used to estimate jaw crusher capacity, unit mass and electric power. 
 
Table 3.2.1 - Jaw crusher capacity [Schubert Vol. I]. 
 
 small     medium     large  

W 315 400 500 630 800 900 1000 1250 1600 1800 2200 mm 
G 200 250 315 400 500 630 630 900 1250 1400 1600 mm 

Smin 25 30 40 45 60 80 75 120 180 190 230 mm 
Smax 60 70 80 95 130 160 160 230 320 320 330 mm 
Vmin 2 3 9 14 27 40 50 90 150 230 270 m3/h 
Vmax 4 10 16 30 60 80 100 170 270 380 520 m3/h 
Mass 3 4 6.5 10 20 28 30 60 120 170 240 t 

Power 6 9 13 18 35 50 50 75 110 130 160 kW 
W=width, S=gape, S=set, V=volume capacity 

 
Gyratory crushers have the same application as jaw crushers, their main difference being the fact that the 
crushing action is continuous. An eccentric cone is rotated in a funnel shaped opening (Fig. 3.2.3). The 
largest stroke is at the set opening. Similar to the Blake jaw crusher, the crushing action is effected by 
exerting pressure. The set can be varied by hydraulically lifting or lowering of the spindle (central axis with 
the cone). The hydraulic system also protects against unbreakable material. In this case the spindle lowers 
permitting the object to pass the set. The spindle automatically returns into its original position. Starting the 
crusher with a full crushing chamber and a choke feed is possible. The feed can be directly dumped from a 
mine truck or shovel. 
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Fig. 3.2.3 - Cross-section of gyratory (left) and cone crusher (right) [SME]. 
 
For an equal maximum feed size the capacity of a gyratory crusher is about 4 times that of a jaw crusher. The 
capacity V can be estimated with the following expression (in m3/h): 

SDV 5.28.0=  
D is the lower diameter of the crushing cone (in m) and S the set (in mm). A selection chart for large 
gyratory crushers is given in Table 3.2.2: 
 
 
Table 3.2.2 -  Selection of large gyratory crushers [Schubert Vol. I]. 
 

Df 1000 1250 1600 2000 2500 3150 mm 
Gf 315 400 500 630 800 1000 mm 

Smin 40 50 70 80 100 120 mm 
Smax 80 100 140 160 200 240 mm 

Mass 15 22 40 65 85 150 t 
Power 45 55 75 90 130 170 kW 

 Df=total diameter feed opening, Gf=radial width of feed opening, Smin,max=set 
 
The design of cone crushers is in principle similar to gyratory crushers. They are employed as secondary 
crusher. Crushing action is more based on impact rather than on pressure. Hence they have a faster rotating 
speed of the cone, which usually varies between 300 and 600 min-1. The effective nip angle is smaller as for 
a gyratory crusher and may decrease to the bottom (as with the curved jaw crusher shape, Fig. 3.2.2, right). 
Reduction ratios are 15 ... 20. The maximum feed size can be up to 250 mm for a large crusher, and the 
product size can be as small as 3 mm for a small one. The stroke length is several times more than the set, 
contrary to gyratory crushers where it is reverse. Cone crushers have a much wider crushing cone with a side 
angle of 30o at the top to 50o at the lower end. For gyratory crushers this angle is constant (60o ... 75o).  
 
If for primary crushing a jaw crusher or a gyratory crusher is selected depends on several factors. An 
overview: 
 
Jaw crusher advantages 

• Little head room required, favourable for underground crushing 
• Easy replacement of worn parts 
• Easy adjustment of set opening 

 
Jaw crusher disadvantages 

• Expensive, heavy foundations necessary due to intermittent crushing action 
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Fig. 3.2.5 - Forces on a particle in a roll crusher [Schubert Vol. I]. 
 
The reduction ratio of a roll crusher (N) is determined by S, the set opening (distance between the rolls) and 
the roll diameter Dw. The top feed size is limited by the roll diameter. If the top feed size is too large, the 
angle of friction is insufficient to “draw” the feed into the rolls and the material simply stays lying on top of 
the rotating rolls. This is most unfavourable employing smooth surfaces, for which the theoretical maximum 
feed size can be determined.  
 
Consider the horizontal component FH and vertical component FV=Fsin(ß/2) of the radial contact force F  
(Fig. 3.2.5, left). FV acts against the “drawing-in” of the particle that is caused by the tangential friction force 
FR=μF (μ: friction co-efficient, usually around 0.3). The vertical component of FR, FS=FRcos(ß/2)=μFcos(ß/2) 
is opposed to FV. Condition for the particle’s drawing in is: 

2tan βμ >
> VS FF

                           (3.2.1) 

For average flat rolls μ≈0.3, hence ß≈30o. In practice the top feed size d0 should fulfil (Fig. 3.2.5, right): 

2
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with S the set opening and Dw the roll diameter. From this follows 
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For a reduction ratio of 4:1 and for μ=0.3 Dw>67s and hence Dw>17d0, while for a reduction ratio of 8:1 
Dw>158d0. Hence, for larger reduction ratios the roll diameter becomes excessively large, with consequently 
higher costs and space requirements. In practice N=3...4 for a flat roll surface and N<8 for a toothed surface. 
Dw≈20d0 for a flat surface, Dw≈10..12d0 for  a profiled surface and Dw<10d0 for a toothed roll. Roll crusher 
capacity Cr in t/h is given by: 

310'6.3 −= fSvWCr ρ  
v is the tangential velocity of the roll surface [m/s], W’ is, for flat roll surfaces the roll width W [mm], for 
toothed surfaces about 0.5...0.6 the roll width, S the set opening [mm], ρ the material density [g/cm3], and f a 
materially dependent constant between 0.1 and 0.3.  
 
Advantages of roll crushers 

• Low energy consumption 
• Simple construction and trouble free operation 
• Easy maintenance and repair, especially for fines crushing 
• Handles frozen, sticky or agglomerated feed 
• Uniformity of product 
• Often the most economic solution in the 3...10 mm range 
• Simultaneous heat transfer via the rolls is possible 

 
Disadvantages of roll crushers 

• Low reduction ratio 
• Low capacity in relation to its unit dimensions (not compact) 
• Continuous feed rate is necessary, no choke feed 

 

 65



Fig. 3.2.6 –
 
For friable m
swing hamm
gypsum, sal
clearly defin
Important d
installed), a
for hammer
for the mate
material. 
 

Fig. 3.2.7 - 
 
In impact c
left). An adv
to 100 μm i
20...60 m/s)
around 1500
the excessiv
between rot

– Impact crus

materials wit
mer crushers
lt, sticky ore 
ned. There is

difference is t
and the main 
r crushers, in
erial in hamm

Principle (le

crushers or i
vantage of im
s possible. T
). Large impa
0 m3/h. Disa
ve crushing o
tor and rotor 

sher for fine 

th low abrasi
, hammer mi
etc. Both cru

s  a wide var
the presence 
crushing act

nstead of on t
mer crushers.

eft) of an imp

impactors br
mpact crushe

The rotation s
act crushers 
dvantage ma
of undersize 
plate is an e

coal [Humbo

iveness impa
ills, or cage m
ushers show 

riation in imp
of a bottom 

tion mechani
the rotor and
. Hammer m

 
pact crusher 

reakage is ac
ers is the redu
speed is typic
can handle a

ay be more ex
feed. Wear w
ssential desi

66

oldt Wedag]

act crushers
mills, Fig. 3.
similarity in

pact crusher d
screen or “c

ism, which is
d rotor plate i
mills can hand

 
. 

s (Fig. 3.2.6, 
.2.8) are emp
n principle an
design, often

cage” in a ham
s more betwe
itself for imp
dle more stick

3.2.7) or ha
ployed, e.g. f
nd the differe
n optimised f
mmer crushe
een rotor and

pact crushers
ky, agglome

ammer crush
for coal, lime
ence is not al
for specific m
er (but it is n
d screen or o
. There is les

erating or duc

hers (also 
estone, 
lways 

materials. 
not always 
n the rotor 
ss free space 
ctile 

 
(right) [Schuubert Vol. I ((r)]. 

chieved on th
uction ratio t
cally betwee
a top feed siz
xcessive fine
will be exces
gn paramete

he rotor and r
that can be a

en 500 and 30
ze of up to 1.
es generation
ssive if silica
r. For  a fine

rotor plate by
as high as 40:
000 rpm (tan
5 m with cap

n relative to o
a content exc
er sized produ

y impact (Fig
:1. Size redu

ngential rotor
pacities of ty
other crusher
eeds 15%. T
uct this shou

g. 3.2.7, 
uction down 
r speed 
ypically 
r types and 

The distance 
uld be 

 



smaller beca
s0 of a fine p

ause of the s
particle in ai

shorter decele
ir is calculate

eration distan
ed with 

nce of fines after impact from the rottor. The brakking distance 

 

where vr is t
and η the vi
in the lamin
The maximu
for selective
crushers is g
 
Table 3.2.3 
 
 H 

Dr 630 
Wr 630 

dmax 300 
Vmax 25 
Vmin 10 

Mass 3 
Power 30 

Dr=r
 
Advantage

• 
• 
• 
• 
• 

 
Disadvanta

• 
• 
• 
• 

 
 

the starting s
iscosity of ai
nar flow regim
um feed size
e size reducti
given in Tab

- Capacity o

H H
800 1000
800 1000
400 500

40 65
20 35
6 10

45 70
rotor diameter, W

s of impact 
High reduct
Easy adjust
Lower capit
Small head 
Selective cr

ages of impa
Constant fe
Only crushi
No material
High wear (

speed, obtain
ir at the ambi
me (Re<1). B

e is 60...1500
ion in case o

ble 3.2.3. 

of heavy duty

H H H
0 1250 160
0 1250 160
0 700 100
5 150 31
5 60 12
0 20 4
0 130 20
Wr=rotor width, d

crushers 
tion ratio 
able to varia
tal costs in c
room requir

rushing possi

act crushers 
ed rate requi
ing of soft or
l that tends to
(especially o

s
η
ρ

18

2

0
ppr dv

s =

ned after coll
ient temperat
By adjusting
0 mm. When 
one mineral h

y (“H”) and 

H H 
0 2000 250
0 2000 225
0 1400 150
0 540 100
5 270 46
0 75 1
0 550 120

dmax=top feed size,

able feed mat
omparison to
ements 
ible in some 

ired 
r middle hard
o agglomerat

on rotor edge

67

lision with th
ture inside th

g impact plate
no bottom s

has a differen

lighter impa

H L 
00 630 8
50 630 8
00 60 
00 8 
60 16 
15 2 
00 16 
, Vmax,min=Capaci

terial or diffe
o jaw, gyrato

cases 

d rock 
te should be 
s), and the n

 

p  

he rotor, dp th
he crushing c
es the crushe
screen is insta
nt strength th

he particle di
chamber. Th
er can be adju
alled impact 

han the other

iameter, ρp it
is formula is
usted to a sp
crushers can
s. Capacity o

ts density 
s only valid 
ecific feed. 
n be used 
of impact 

act crushers ((“L”) [Schubbert Vol. I]. 

L L 
800 1000 1
800 1000 1

80 100 
25 50 
15 25 
4 6 

30 50 

L L 
1250 1600 
1250 1600 

150 250 
75 125 
45 70 
12 24 
80 140 

L  
2000 mm 
2000 mm 

500 mm 
390 m3/h 
125 m3/h 

50 t 
300 kW 

ity 

erent applica
ory or roll cru

ations 
ushers 

fed 
eed to use addvanced weaar resistant mmaterials 

 

 



Fig. 3.2.8 - 
(right, 1=ro
tramp iron)

(Swing) ham
otor, 2=hamm
 [Wills (l) / S

mmer crusher
mer, 3=cage
Schubert Vol

r (left) and tw
e, 4=crushing
l. I (r)]. 

wo versions w
g plate, 5=co

with a movin
ompartment f

ng crusher pl
for uncrusha

late, e.g. for 
able materia

sticky ore 
al,such as 

 
Hammer cr
field and are
speeds are s
usually limi
special com
replaced by
are known a
(ductile) me

rushers (ligh
e especially 
similar as tho
ited to 10...1

mpartment ma
y impact belts
as shredders,
etals such as 

 

Fig
 
Rotary bre
crushing of 
4...10 m. M
size of the p
easily as co
coal is quick
handling run
due to partia
cheaper than
and plug the
 

g. 3.2.9 - Rota

eakers are em
f hard rock. T

Maximum feed
perforation is
al and are di
kly removed
n-of-mine w
al shale remo
n gyratory or
e perforation

hter versions
suitable for s
ose of impact
5. A bottom 
ay be present
s or rolls that
, where they 
scrapped car

ary coal brea

mployed for t
The rotation s
d size is abou
s the size to w
scharged at t

d, so there is 
washery feed, 

oval. Mainte
r jaw crusher

ns. 

s are also kno
size reductio
t crushers (2
screen or ca
t to catch unb
t remain clea
are especiall
rs, electric w

own as hamm
on of sticky a
0...60 m/s ta

age is usually
breakable m
an (Fig. 3.2.8
ly designed a

waste etc.  

mer mills or
and agglomer
angential roto
y installed en
aterial. For s
8, right). In r
and used for 

r cage mills) 
rating materi
or speed). Th
nsuring a defi
sticky feed th
recycling tech

size reductio

have a wide
ial (Fig. 3.2.8
he reduction 
fined top prod
he impact pla
hnology sim
on of object 

e application 
8). Rotor 
ratio is 
duct size. A 
ates are 
ilar crushers
containing 

 

aker [SACPS

treatment of 
speed is 12 –
ut 1100 mm 
which the co
the end, effe
little generat
 since they c

enance and op
rs. A disadva

68

S]. 
 

f large tonnag
– 18 rpm with
and capacity

oal is to be br
cting a pre-c
tion of fines.
control top si
perating cost
antage is tha

ges of coal (F
h a diameter 
y of the large
roken. Large
concentration
 Rotary coal
ze and reduc
ts are relative
t, when prese

Fig. 3.2.9). T
of 3...4 m an

er units appro
e pieces of sh
n (“selective 
l breakers are
ce the need fo
ely low and t
ent, clayey m

They are not 
nd length of 
oximate 2000
hale do not br
crushing”). T

e typically in
for sorting op
they are gen

material may

suitable for 
typically 
0 t/h. The 
reak as 
The broken 

nstalled for 
perations  
erally 

y form balls 

 



Fig. 3.2.10 
ball mills (r
 
Breaking by
ore through
soft rock or 
crusher plan
certainty un
medium har
 
Gravity sta
occasionally
though 250.
Capacity ran
with apertur
cost for sma
occasionally
copper that 
flotation. W
multi-tonne
for primary 
should be in
 
 
3.3. Grindi
 
A typical m
liberation o
necessary, w
making, cem
grinding op
which often
grinding me
 
Tumbling m

Ball mi
Rod mi
Tube m
Pebble 
Autogen
Semi-A

 

- Gravity sta
right). 

y hand ham
h grizzlies, or
r for work on
nt should be 
neconomic. H
rd rock and c

amps (Fig. 3
y be in use a
...750 kg was
nged from 2
res (and henc
all-scale oper
y in small-sc
is uncrushab

Wet operation
e ball or block

breaking of 
nstalled arou

ing 

metallic ore is
f the metallif
which is effe
ment product
erations rely

n consists of 
edia: 

mills: 
ll (steel balls
ll (steel rods

mill (rods&ba
mill (hard, ro
neous mill (l

Autogeneous 

 
amp (left). Co

mers or han
r to break ov
n high altitud
such that han

Hand held or 
coal.  

.1.5, 3.2.10) 
t older and s
s more comm
...30 t/24h fo
ce product to
rations, since

cale gold min
ble in jaw or 
n was more c
k is dropped

f large slag fr
und the drop p

s usually crus
ferous miner

ected by mean
tion, preparin

y on impact a
a rotating dr

s) 
s) 
alls, or balls o
ounded rock
large pieces o
(SAG) mill (

omparison of

nd sledges m
ersize lumps

de, ≈5 kg for 
nd breaking 
crane moun

became obs
mall-scale op

mon. Drop he
or each stamp
op size) from
e crushing an
ning operatio
rotary crush
ommon than

d from severa
rom e.g. steel
point to prev

shed downto
rals. Therfore
ns of grindin
ng pulverised
and shear of t
rum. The foll

only) 
s, e.g. flint s
of ore) 
(Large piece

69

f product siz

may, besides l
s for crushers
average serv
is unnecessa

nted pneuma

olete in the f
perations. W
eight was usu
p, depending

m 0.5...10mm
nd grinding a
ons even toda
hers. The pro
n dry operatio
al meters heig
lworks or du

vent the crush

o approximat
e further size
ng. Besides li
d coal fuel an
the material 
lowing mills 

tone or porce

es of ore and 

ze distributio

laboratory w
s that are too
vice, and 6...7
ary, since in g
atic hammer

first half of th
Weight of the 

ually 14...20
g on rock typ

m. The advant
are combined
ay. Further it
duct of a gra
on. Ball brea
ght on a larg

uring demolit
hed particles

ely 5...25 mm
e reduction d
iberation, gri
nd numerous
with special 
are distingu

elain) 

steel balls) 

on of gravity 

work, occasion
o small. ≈4 kg
7 kg for hard
general its op

rs may be use

he 20th centu
stamps coul

0 cm at typica
pe, stamp wei
tage of stamp
d. Therefore 
t can handle 
avity stamp is
aking is a va

ge piece of m
tion operatio
s spreading a

m. Often this
downto appro
inding is equ
s other applic
grinding me
ished, based 

stamps comp

nally be used
g sledges are
d rock. Desig
peration is w
ed to crush s

ury, but may 
d be up to 10
ally 60...120
ight and bott
ps is the low
it can be see
ore with met
s too inhomo
ariant in whic

material. It is p
ons. Armoure
away with hig

s is still insuf
oximately 10
ually essentia
cations. The 
edia inside th

on differenc

pared to 

d to break 
e used for 
gn of a 
with 

oft and 

000 kg, 
 drops/min. 
tom screen, 

w investment 
en 
tallic (pure) 
ogeneous for
ch a heavy, 
practiced 

ed plates 
gh speed. 

r 

fficient for 
00 μm is 
al in iron 
majority of 

he mill, 
ces in 

 



Other mill t
Roller m

types: 

Vibrato
mill, pan mill 
ory mill 

 

 
  

Fig. 3.3.1 - 
RPM, wave 

ABJ open di
liner, 27 kW

ischarge ball
W power cons

l mill for sma
sumption, 2-3

all gold mini
3 tons of <20

ing operation
0mm feed pe

ns:1.2m diam
er hour [Wal

meter, 1.5m l
ltkru Holding

long,  31 
gs Ltd].    

 
Tumbling m
section with
wet. Most o
ceramics ind

mills have a 
h typical term
ore grinding i
dustry, ceme

cylindrical o
minology is s
is wet, while
ent, food). 

or conical bo
shown in Fig
e in other are

ody that rotat
g. 3.3.3, left. 
as mostly dr

tes around a h
Tumbing mi

ry grinding is

horizontal ax
ills can be em
s applied (Ch

xis (Fig. 3.3.
mployed dry 
hemical engi

1). A cross 
as well as 
neering, 

 
Advantages

Less en
s of wet grind

No dust
nergy consum

ding: 

Moist fe
 
Disadvantag

Higher 
Corrosi
Product
Some p

 
The fill rate

Vm is the to
the media m
and 0.2 for 

with Vv the 
indicates th

In practice i
 
An optimise

Mill rot
Mill dia
Shape a
Medium
Liner pr
Handlin

t generation 
mption per tonne of produuct 

feed does nott need to be ddried prior too grinding (coontrary to drry grinding) 

ges of wet gr
wear of grin

rinding: 
nding media aand liner 

on 
t is wet and m

products are n
must be dew
not allowed t

atered 
to contact waater (cement!) 

e φm of the gr

tal volume o
mass, and ρm 
rods. The fil

feed volume
e fraction of 

it appears tha

ed motion of
tation speed 
ameter 
and size of th
m fill rate φm
rofile 
ng properties

rinding mediium is given 

mϕ

of grinding m
its density. ε

ll rate of the 

M

m
m V

V
ρ

==

by 

ϕ

e, mv the feed
f the inter-me

ϕ

at φv’=0.6...1

f the grinding

he media 
m 

s (flow behav

media inside t
εm is the poro
feed, φv, is g

M

v
v V

V
ρ

ϕ ==

d mass, ρv its
edia porosity

mm

v
v V

V
ε

ϕ =='

1.1 is an opti

g media is es

viour) of the 

70

Mmm

mm 1
V)1( ερ −

the mill, incl
osity between
given by 

Mvv

v

V
m 1

)1( ερ −
s density and

y that is filled

mm

v

εϕ
ϕ

       

imum value. 

ssential for th

feed 

1
          (3.33.1) 

VM

luding porosi
n the grindin

ity, VM the in
ng media, wh

nside mill vo
hich is about 

olume, mm 
0.4 for ballss 

           (3.3.2) 
M

d εv feed poro
d with feed:

osity. The efffective fill raate, φv’, 

.3)              (3.3

 

he efficiencyy of the mill. It is influencced by 

 



 
Ball mills a
large mills t
materials, b
balls have ≈

are usually sh
the diameter 

but is usually 
≈130 mm dia

horter than ro
can be up to
 no larger th

ameter. 

od mills and 
o 6 meters. F
an 10 mm. R

have a diam
eed of a ball

Reduction rat

mater that is n
l mill can be 
tios are in the

not much sma
as large as 2
e range of 20

aller than its 
25...40 mm fo
0:1 ... 200:1. 

length. For 
or friable 
the largest 

Fig. 3.3
 
Cataractin
grinding, w
with Fig. 3.
free fall to t
during upw
 
Cascading 
flat surfaced
inactive. Gr
determined 
density of th

At intermed
a flat liner s
there is no g
an optimise
cataracting.

 Fig
 
The critical 
balance in r
with no nett
the centrifug

3.2 - Motion 

g (Fig. 3.3.2
here fines pr
2.8, rotary co
the bottom. G
ard motion.  

(Fig. 3.3.2B
d liner. It is c
rinding action
by mill diam
he grinding m

diate rotation
surface when
grinding acti
d rotation sp
  

g. 3.3.3 - Ball

speed ncrit ca
radial directio
t effect of gr
gal force  

 
of grinding mmedia A=Caataracting, B==Cascadingg. 

A) occurs at
roduction is u
oal breaker).
Grinding acti

) is employe
characterised
n is due to pr

meter Dmill, av
media ρm: 

P =
n speeds catar
n slip occurs.
on. ncrit is the

peed nopt for m

l mill termino

an be determ
on. The force
avity. We as

t higher rotat
undesireable
. The grindin
ion is due to 

ed for ultra-fi
d by the rollin
ressure, shea
verage heigh

ghmρ=       
racting and c
. When the ro
e citical spee
maximum ef

ology (left), m

mined as a fun
es in tangent

ssume flat lin

2

mg
R

mv
=

71

tion speeds a
e. It also occu
ng media are 
impact of th

ine grinding,
ng motion of
ar and frictio
ht h of the me

   with h pro
cascading oc
otation speed
ed when cent
fficiency, wh

mill critical 

nction of mil
tial direction
ners. When w

αcosg         

as cascading 
urs when pro
lifted by the

he falling med

and is mainly
ofiled liners a
e lined wall o
dia and due t

y applied in 
are employed
of the mill an
to pressure a

ore 
d (compare 
nd return in 
and shear 

, e.g. pigmen
f the media. 
n. The pressu
edia indside 

nts, and occu
The core of t
ure load on t
the mill (dep

rs at slower r
the media bo
the feed grain
pending on φ

rotation and 
ody remains 
ns is 
φm) and 

portional to Dmill 
ccur combine
d n is too hig
trifuging star
hich is relativ

ed. Excessive
gh, the media
rts. For every
vely low for c

e wear is pro
a start centrif
y mill and fe
cascading an

oblematic on 
fuging and 
ed there is 

nd higher for r 

 
speed determmination ncritt (right) [Willls]. 

ll and media 
n consist of su
weight of the 

characteristi
upport from 
grinding bal

ics by means
lifted grindin
ll or rod just 

s of a force 
ng balls, 
balances 

       (3.3.4)

 



applies with
rod diamete
or ball diam

h m mass of t
er into accoun
meter. Thus 

the grinding 
nt (D-d)/2 is

body, v its l
 the radius o

linear velocit
of the outerm

ty, and g the 
most path with

gravity acce
h D the mill 

eleration. Tak
diameter and

king ball or 
d d the rod 

The critical 
α=0 and hen

Hence, the l
rotation spe
 
Design of th
research pay

Fig
 
Due to frict
resistant lin
liner is chos
 

Profile

Cost pr
Method

 Fig
 
Frequently u
liner materi

Wear re

speed ncrit is
nce cos α =1

larger the mi
eed”.  

he liner profi
ys special att

g. 3.3.4 - Effe

ion and impa
ner is a nece
sen taking th

, determines 
Cataract: co
Cascade: fi

rice of the w
d of liner con

g. 3.3.5 - Som

used liners a
als is applied

esistant steel 

s obtained wh
. Then 

ill diameter, 

ile is essentia
tention on m

ect of liner typ

act between 
essity. Wear m
he following 

lifting of the
oarse feed, la
ine feed, sma
ear resistant 
nstruction. A

me liner types

are shown in 
d.  
alloys (Cr-, 

0.0cos =α

hen the balls
2

0011 2 Dn −

D
ncrit =

42

the lower ncr

al for the grin
mill performan

ype on ball tr

grinding me
may compris
into account

e grinding bo
arge lifters 
all grinding m
liner: High i

A favourable 

s and lifter d

Fig. 3.3.5. W

Mn-, Ni-, M

72

s or rods cann

d−
3.2

  rev/mi

rit. In practice

nding media
nce as functi

rajectories. n

dia and wall 
se up to 50%
t: 

odies (Fig. 3

media, small
investment, l
method redu

design [Wills]

Wave liners a

Mo-, Va-) of 5

d
    (3.3.5)

not fall even from the verry top of the mill, where 

in      (3.3.6) 

e nopt=0.6...00.8 ncrit with ψψ=n/ncrit the “specific 

a trajectories,
ion of liner p

n=constant fo

of the mill w
% of the opera

.3.4). 

l or no lifters
low maintena
uces mainten

]. 

are often app

50...150 mm 

, as shown in
profile and lin

for I...VI [Sch

wear occurs a
ational costs 

s 
ance, or reve

nance time an

 

plied in rod m

thickness 

n Fig. 3.3.4. C
ner wear.   

Current 

hubert Vol. I]
 

I]. 

and mountin
of a mill. Th

ng wear 
he type of 

erse. 
nd costs conssiderably. 

mills. A widee variety of 

 



Rubber (only when lifters are prresent to avoid slip). Lesss noise and eeasy installatiion (leight wweight). 
 
Grinding m
 

 
Fig. 3.3.6 - 
 
 
Internal leng

Power c
Grindin
Residen
Mill cap

 
The power 

The constan
specific typ
see Fig. 3.3
speed ψ (n/n

P is practica
there is ore 
= π/4 D2L w

where C1 an

with C a con

Fig

mills are fittedd with a gearr/pinion asseembly to the driving mottor (see Fig. 3.3.1 right, 33.3.6).  

Ball mill wit

gth L and dia
consumption
ng efficiency 
nce time distr
pacity 

consumptio

nt 8.44 includ
e of mill (1.0
.10), Kφ is de
ncrit, usually 

ally independ
in the mill o

we can write 

nd C2 are con

nstant. Mill c

g. 3.3.7 - Dete

th gear/pinio

ameter D of 
n 

(D affects im
ribution of o

on of a tumbl
P =

des grinding 
0 for wet ove
etermined by
65%...85%).

P =
dent of partic

or not. Given 

CP =
nstants. For t

' Cm =
capacity is p

ermination o

on assembly 

a mill largel

mpact intens
ore grains 

ling mill can
44.8 KKKT ϕ

media densi
erflow discha
y medium fil
. Kφ and Kψ a

,,,(f m φϕρ
cle size distri
constant gri

5.2
1 CLDC =

the mill capa
5.0DCVm     

proportional t

of Kφ and Kψ

73

(middle) and

y affect: 

sity) 

n be estimate
5.2LDKφ

ity (and assu
arge, 1.13 fo
ll rate φ (usu
are given in t

), 5.2DL     
ibution and f
inding media

5.0
2 DVC m    

acity m’ in t/h
     

to power con
 
 
 
Kφ is rea
using the
 
 
Kψ is rea
rotation 

[Schubert V

 

d driving mottor (left) [SMME]. 

d using an emmpirically deetermined exxpression: 
[kW]     ((3.3.7) 

umes steel), K
or wet grate d
ually 30%...50
the diagram 
     (
feed rate. He
a and a fixed 

       (
h: 

 (3
nsumption. 

ad as function
e solid lines f

ad as function
speed) using

Vol. I]. 

KT is a factor
discharge and
0%) and Kψ 
of Fig. 3.3.7

r determined 
d 1.25 for dry
by the specif

7. Summarisi

by a 
y discharge, 
fic rotation 
ing, 

(3.3.8) 
ence, for P it 
φ, with the m

does hardly 
mill internal 

matter if 
volume Vm 

(3.3.9) 

3.3.10) 

n of φm (med
for ball or ro

n of ψ (n/ncri
g the dashed 

dium fill rate)
od mill. 

it, the specific
line. 

) 

c 

 



 
Several spec
grinding is e
a vibratory 

cial devices 
employed, an
feeder. Fig. 3

are used for 
nd whether t
3.3.8 gives th

feeding a tum
the mills ope
hree commo

mbling mill. 
erate in close
n feeders for

The feeder t
d or open cir
r wet grindin

type depends
rcuit. Dry mi
ng. 

s on whether
ills are usual

r dry or wet 
lly fed with 

 

Spo
Fig

 
A spou

clas
A drum

hea
A (com

rake
clas

Sometim
 
Moisture e
good handli
than 45 Vol
particles wi
decreasing p
moisture co
feeds. 
 

Fig
 

out feeder 
g. 3.3.8 - Mill

t feeder is o
ssifiers. The 

m feeder has 
adroom as a s

mbined) drum
e classifier (C
ssifier sands 
mes double s

ffects the gri
ing (flow) pr
l%. The inter
ll form due t
particle size,

ontent for we

g. 3.3.9 - Ball

 

l feeders [SM

ften applied 
curved chute
an internal s

spout feeder.
m-scoop feed
Chapter 2). N
for regrindin

scoop feeder

inding efficie
roperties. For
rmediate ran
to capillar fo
, especially <
t grinding is 

l mill with sp

Drum 
ME]. 

for open circ
e gravity-fee
spiral that ca
 It allows co

der is genera
New materia
ng.  
rs (without d

ency to a gre
r dry feeds it
ge 4 Vol%...

orces, causing
< 1 mm. Also

50 Vol% ... 

pout feeder a

74

feeder 

cuit rod mill
eds the slurry
arries the feed
onvenient add
ally used for w
al is directly f

drum) are use

eat extend. Fo
t should be b
.45 Vol% sho
g agglomerat
o sticking to 
55 Vol% for

and grate dis

s or mills in 
y into the mil
d to the insid
dition of grin
wet grinding
fed into the d

ed for finer-s

or an optimis
below 4Vol%
ould be avoi
tion. This eff
the mill inte
r coarse feed

 
charge [SME

Drum-sccoop feederr 

closed circu
ll. 

it with hydroocyclone 

de of the mill
nding balls. 

l. It requires less 

g in closed ci
drum. The sc

ircuit with a 
coop picks up

screw or 
p the 

sized feeds.  

sed efficienc
%. For wet fee

ded: water b
fect strongly

ernal surface 
ds, and 55 Vo

cy the feed sh
eds it should

bridges betwe
y increases w

occurs. The 
ol% ... 70 Vo

hould have 
d be higher 
een the 

with 
optimised 

ol% for fine 

E]. 

 



Usually L/D
P=8100 kW
proportion a
feed:   

D proportion 
W, however o

and ball diam

for ball mill
ptimal result

meter is large

ls is between
ts were obtai
ely determine

n 1 and 2. Th
ined with D n
ed by the d80

e largest mo
not exceedin

0 (80% cumu

dels have L=
ng 5.5 m. The
ulative unders

=10m, D=6.5
e optimised L
size diameter

5m with 
L/D 
r) of the 

d80  of feed
5...10
0.9...

very fi

d [mm] 
0 
4 
ine 

max. b

 
The residen
discharge.  

Fig
 
An overflow
larger diame
essentially t
sensitive for
 
In a grate d
passing the 
general, due
discharge m
would other
compared to
would dama
relative to a
 
Grinding ba

Grindin
On pres

suff
On imp

 
For a large g
balls are mo
an expressio

with C=0.02
of the feed (
 

nce time, and
 

g. 3.3.10 -  a=

w discharge
eter as the in
trouble-free o
r it.  

discharge mi
screen is ele

e to the rapid
mill. A grate d
rwise blind th
o an overflow
age the scree
an overflow d

all diameter i
ng surface: t
ssure load the
ficiently sma

pact load the 

grinding surf
ore favourabl
on for d0, the

24 for steel b
(see Section 

d hence grind

=overflow di

e (Fig. 3.3.10
nlet. Residen
operation. A

ill a screen is
evated into th
d product dis
discharge is 
he sceen. A g
w discharge. 
en. A disadva
discharche.   

is determined
the number o
e catching a
all (see crush
kinetic ener

face many sm
le. Therfore 
e largest ball 

0 = Cd

balls, d80 rela
3.5 for deter

ball size [mm
60...90 
40...50 
20...30 

m] L/D 
1,00...1,2
1.25...1.7
1.50...2.5

25 
75 
50 

ding efficienccy of the matterial is largeely determineed by the dessign of the 

ischarge, b=g

0a) can be use
ce time is rel

A disadvantag

s installed be
he outlet ope
charge, resid
unsuitable fo
grate dischar
A grate disc

antage is the 
 

d by: 
of ball-mater
angle betwee
hing roll prin
rgy should be

mall balls are
in practice th
diameter to 

80 ⎜⎜
⎝

⎛ W
dC v

φ
ρ

ates to the mi
rmining Wi) 

75

grate discha

ed for ball as
latively long

ge is possible

efore the outl
ning via lifte
dence time o
or ultra-fine 
rge mill prod
charche cann
approximate

rial contact p
en the coarse
nciple, Fig. 3.
e sufficient t

e needed, for
here is an op
enter the mi

6
1

3
1

−
⎟⎟
⎠

⎞
D

Wi  (

ill feed size a
and Φ a char

 
arge (A=feedd, F=product)t) [Schubert Vol. I]. 

s well as rod 
g. An overflo
e over-grindi

mills. The o
ow discharge 
ing for miner

outlet openin
is characteri

rals that are p

ng has a 
ised by an 
particularly  

let (Fig. 3.3.9
ers on the mi
f the materia
grinding: the

duces a coars
not be applied
ely 15% high

9 and 3.3.10b
ill inside beh
al is shorter t
e relatively s
ser product o
d for rod mil
her energy co

b). The grou
hind the scree
than in an ov
mall grindin

of narrower s
lls, otherwise
onsumption p

und material 
en. In 

verflow 
ng balls 
size width 
e the rods 
per tonne 

points should
st feed partic
.2.5, right). 

d be as large as possible. 
alls should bcle and the b be 

to crush the pparticle on caataracting. 

r a good catc
ptimised ball 
ll: 

ching angle a
size distribu

and kinetic en
ution. Bond e

nergy larger 
established 

(mm)           ((3.3.11) 

and ρv to its d
racteristic pr

density. Wi i
roperty of the

is the Bond w
e rock to be g

work index 
ground. 

 



Fig. 3.3.11 
twist in line
 
In practice o
predetermin
steel wear fr
3000 g/t.   
 
For ball mil
For a >10 m
by giving it 
 

Fig
 
The length o
least L>D in
the rods: if t
crushing me
rod diamete
Usually they
applied. 
 
Rod mills g
that are sma
(Fig. 3.3.13

Fig
 

- Size segreg
er profile (rig

only the larg
ned size distr
from the med

lls optimised
mm feed ball 
t sufficiently 

g. 3.3.12 - Ro

of a rod mill
n order to pr
their diamete
edium. For th
er is less criti
y are of the o

generate a mo
aller than the
).  

g.3.3.13 - Pri

gation of grin
ght). 

gest grinding 
ribution must
dia is between

d operating p
mills will no
long grindin

od mill with o

l (Fig. 3.3.12
event the rod
er <100mm a
heir diameter
ical as ball di
overflow dis

ore uniformly
e required pro

inciple of rod

 
nding balls d

balls are rou
t be fed. We
n 100 and 10

arameters ar
ot grind effic
ng time (larg

overflow disc

2) is usually 
ds from disar
and L>6 m th
r the same ar
iameter. The
charge type,

y sized produ
oduct size). A

d mil. Feed fr

76

due to specifi

utinely added
ar effects the
000 g per ton

e φ=40%....4
ciently. Any 
e residence t

charge [SME

longer as its 
rranging. Th
hey tend to b
rguments as 
e largest rod 
 though rarel

uct than othe
Apart from g

 
from the righ

fic mill design

d. Only when
e desired size
nne of produc

45%, ψ=0.65
desired finen
time). 

 
E]. 

diameter, ty
e maximum 
bend, which 
already discu
mills have L
ly central or 

er tunbling m
grinding, the 

t, the materi

n: conical m

n a mill is fil
e distribution
ct, in excepti

5...0.8 and fo
ness of the pr

ypical L/D va
length is lim
should be av
ussed for bal

L=6.1m, D=4
end peripher

mills and min
rods effect c

al flows towa

 
ill shape (lefft) or spiral 

led for the fi
n automatica
ional cases e

irst time a 
ally. Typical 
even up to 

or the feed d8
roduct can b

0<10mm. 
be obtained 

alues are 1.4.
mited by the s
voided. The r
ll mills apply

4.6m, and P=
ral discharge

...1.6. At 
stiffness of 
rods serve as
y, however 

=1700 kW. 
e are 

s 

nimise fines (
classification

(particles 
n of the feed 

ards the left [Wills]. 

 



In this way 
classifying 
ball mills an
as a ball mil
feed and pro
second a ba

only the coa
effect, rod m
nd should ha
ll product. O
oduct as ball

all mill.  

arsest materia
mills are usua
ave a d80<25m
Optimised φ=
l mills. There

al is crushed 
ally employe
mm. Product
=35%...45% a
efore in many

repeatedly a
d in open cir
t size is usual
and ψ=55%.
y grinding ci

and there is n
rcuit. Top fee
lly d80=5...0.
..75%. Summ
ircuits the fir

no overgrindi
ed size can b
5 mm, which

marising, rod
rst stage com

ing. Due to t
be a little larg
h is consider
d mills have a
mprises a rod 

their 
ger as for 
rably coarser
a coarser 
mill, the 

r 

 
Autogeneou
fraction of t
the feed and
mills exist: 
mills. 

us mills hav
the feed serv
d to promote 
pebble (PAG

e the same w
ves as grindin

cataracting. 
G) mills, (co

working princ
ng media. Th

Some mills 
onventional) 

ciple as rod o
he wall of the

have additio
autogeneou

or ball mills,
e mill is equi
onal breaking
us (AG) mill

 however a c
ipped with lin
g plates. Thre
s and semi-a

coarse lump-
ners to preve
ee basic type
autogeneous

-sized 
ent slip with 
es of AG 
s (SAG) 

 
1. Pebble m
primary grin
taken from t
ball mills ca
mass should
if for second
25...60 mm 
stage pebble
typical appl

mills are usua
nding stage. 
the ore flow 
an be conver
d be equal or
dary grindin
if the pebble

es up to 250 
lication of pe

 
2. Autogen
gyratory cru
mechanism 
but can be a
ratios (60<N
of ball mills
frequently a
high. Autog
tumbling m
fine product
12.2 m), and
 
Dry autoge
high reducti
can also be 
 
3. Semi-aut
difference b
otherwise th
become dep
 

eous mills u
usher. The co
is the crushi

as fine as 0.1
N<1000) and
s), simple flo
applied since
geneous mills

mills (φ<0.3). 
t, which is un
d L/D is sma

eneous mills 
ion ratios (fe
employed in

togeneous (S
being the add
he coarse fra
pleted. Espec

 

ally fed with 
The grinding
between a p

rted to pebble
r larger than 
g steel balls 
e density is i
mm can be u

ebble mills is

fines, e.g. th
g media cons

primary and s
e mills. The p
the ball mas
of diameter 
n the range o
used. Fill rat
s the grinding

usually have a
oarse feed in
ing due to im
 mm, which 

d one-stage g
owsheet (1 st
e the 1980’s. 
s always ope
This is nece
nfavourable.
aller (L/D<0.

or Aerofall
eed <900 mm
n semi-autog

SAG) mills a
dition of 3...1
action would 
cially the inte

a coarse feed
n the range 10
mpact of large

is fine enou
grinding is po
tage grinding
For fine grin

erate in catara
essary to prev
. Mill diamet
.3).  

l mills are fre
m, product >8
eneous mode

are similar to
10% steel bal
break too ea

ermediate siz

77

he product of
sist of classif
secondary cru
pebble size i
s of a conven
20...40 mm w
of 2800...490
te: 0.35<φ<0
g of hard gol

d (200...300 m
00...300 mm
er particles o
gh for feedin
ossible. Beca
g) and relativ
nding (0.1...1
acting mode
vent graduall
ter is conside

equently app
80 μm). They
e (with added

o convention
lls (Fig. 3.3.
asy and the la
zes not easily

f a rod mill. T
fied coarse fr
usher. L/D ra
is selected ba
ntional ball m
would be nee
00 kg/m3. Wh
0.5 and specif
ld ore in Sou

mm), e.g. the
m serves as gr
on finer ones
ng a flotation
ause of the lo
vely low wea
1 mm) energ
. The fill rate
ly slowing do
erably larger

plied for one-
y operate in c
d steel balls)

nal AG mills 
14). They are
argest lumps
y break, there

They are onl
fraction (usua
atio is simila
ased on the p
mill for the s
eded, the peb
hen applied a
fic rotation s

uth-Africa. 

ly rarely app
ally 25...60 m
ar to ball mil
principle that
ame feed. A
bble diamete
as primary g
speed 0.6<ψ<

lied for a 
mm), e.g. as 
ls, therefore 
t the pebble 
s example, 

er should be 
grinding 
<0.9. A 

e product of 
rinding media
s. The produc
n circuit. Hen
ow investmen
ar (no steel m
y consumpti
e is lower co
own of partic
r than other tu

a primary ja
a. The grindi
ct is typically
nce very high
nt costs (70..

media) they h
ion becomes 
ompared to ot
cles in a thic
umbling mil

aw or 
ing 
y 3...5 mm, 
h reduction 
..95% those 

have been 
excessively 
ther 

ck layer of 
ls (up to 

-stage grindin
closed circui
).  

ng circuits an
it with a win

nd have 
d-sifter, and 

and have sim
e especially 
, needed for 
efore balls ar

milar feeds, t
employed w
effective gri
re added. 

the 
when 

inding, 

 

 



Fig. 3.3
Mine, N
and pin

3.14 -  Sveda
New South W
nion drive (rig

la’s giant 12
Wales, Austra

ght) [Svedal

2.2m (interna
lia, is world
la (l) / TU De

al) diameter, 
’s largest gri
elft (r)]. 

20 MW SAG
inding mill (l

G mill at Cad
(left). Anothe

dia Hill gold/
r SAG mill w

/copper 
with gear 

 
Fig. 3.3.15 
shoe hydrod
massive cas

shows a conv
dynamic bear
stings and ea

ventional SA
rings (right).

asier access to

AG mill desig
. The advant
o the mill.  

gn (left) and 
age of the la

a design wh
atter is the sim

here the mill 
mpler constru

is supported 
uction, avoid

by multi-
dance of 

 

Fig
 
Advantage

• Sim
• Low
• Les
• Incr

low
flot

 
Disadvanta

• Not
• Aut

test
• Hig
• Hig

dow
• Cap
• At a

 

Fig. 3
 
The efficien
efficiency a
pulp lifter d

g. 3.3.15 - Co

s of autogen
mple flow she
wer operation
ss contamina
reased break

wer impact lo
tation (better

ages of autog
t suitable for
togeneous m
twork is nece
gher energy c
gher slimes g
wnstream flo
pacity per un
a variable or

3.3.15b – Sch

ncy of a SAG
at which the g
design. The p

onventional (

neous mills 
eet 
nal costs as b

ation of produ
king along gr
oad compared
r adherance o

geneous mil
r all ore types

mills cannot b
essary (scalin
consumption
generation ma
tation stages

nit of mill vol
re body suppl

hematic view 

G mill depend
ground mate

presence of a

(left) and she

ball mills 
uct with Fe3+

rain boundari
d to ball mill
of air bubbles

lls 
s 

be designed u
ng up). 
n for fine grin
ay occur due
s 
lume is lowe
ly of ore that

of a SAG mi

ds on the cha
rial is remov

a slurry pool 

78

ell supported

+ (less steel c
ies when ore
ls. This resul
s).   

using lab-sca

nding 
e to attrition, 

er, due to low
t grinds auto

ill with arran

arge motion 
ved from the 
should be pr

d (right) SAG

consumption)
e minerals are
ts in optimis

ale tests resul

which may 

wer density o
ogeneously m

ngement of p

and, especia
mill. The lat

revented (Fig

G mill design 

), favourable
e stronger th
sed liberation

lts alone: exp

cause high re

of grinding m
may be proble

pulp lifters [L

 
[Krupp Poly

ally for the la
tter depends 
g. 3.3.15c), w

e for flotation
an the matrix

n and more e

pensive pilot

eagent use in

media and low
ematic 

Latchireddi, 

ysius AG].  

n efficiency
x due to 
fficient 

t scale 

n 

wer φ 

2005]. 

arger mills, o
on grate des

which can be 

n the 
sign and 

 



accomplishe
monitoring 
shell. 

ed by emplo
power draw,

ying optimis
, throughput 

sed pulp-lifte
and in addit

er devices. Th
tion by emplo

he performan
oying acoust

nce of a SAG
tic sensors m

G mill is con
mounted on th

ntrolled by 
he outside 

Fig. 3.3.1

 
SAG mill c
 

Fig. 3.3.15

 

Fig. 3.3.15e

15c – Adverse

control 

5d - SAG mil

e – Sound tra

e effect of slu
L

l ball traject
the Imactme

ace used to d
the h

urry pooling 
Lifter (TCPL

tories landing
eter on the sh

determine loa
highest ampl

79

 
g on grinding
L) (r) [Latchi

 
g on the load
hell of the SA

ad position d
litude points 

 

g process in a
ireddi, 2005]

d and striking
AG mill [Alm

during mill re
[Almond, 20

a SAG mill (l)
]. 

g the mill lin
mond, 2005].

evolution. Th
005].  

l), Twin Cham

ners (l); Micr
 

 
he load Toe i

mber Pulp 

rophones of 

is nearest to 

 



 
Fig. 3.3.15f – SAG analyzer display screen showing mill filling based on acoustic signal and other process 

data  [Almond, 2005]. 
 

Tube mills have a very large L/D ratio (L/D=2.5...8). The mill can be divided into compartments, for 
example the first having rods, the second balls, or both having balls of decreasing diameter towards the outlet 
(Fig. 3.3.16). They are for example used for clinker grinding in the cement industry. The largest tube (ball) 
mill is a dry grinding mill, having D=6.2 m, L=25.5 m and is powered by a 11.2 MW ring motor. It runs on 
shell mounted bearings and is installed at a North American gold mine. 

 
Fig. 3.3.16 - Tube mill with rod and ball compartment [SME]. 

 
Roller mills are employed for dry grinding of medium-soft materials, e.g. coal, cement clinker etc. They 
have a lower energy consumption as conventional mills, but show excessive wear for harder materials. There 
are several variants of which the pan mill, or table-and-roller mill is most well know (Fig. 3.3.17, 3.3.18). 
In it, ground material spilling over the edge of the table is air-carried into a classifier that returns coarse 
particles for further grinding. It is possible to combine drying and grinding employing roller mills. Some 
roller mills are also used for mixing (Chili mill, Fig. 3.3.17, right). 
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Ball mill grindability is determined with a horizontal mill having D=L=0.305 m (12 inch) and rotation speed 
n=70 rpm. Grinding media comprise 285 balls of total mass 20.125 kg of the sizes given in Table 3.5.2. 
Distribution of ball mass (right column) is readily calculated from the total mass of the media, ball diameter 
(middle column) and required number of balls as given by Bond.   
 

Table 3.5.2. Grinding media characteristics of Bond’s grindability mill. 
 

Number 
of balls 

Diameter 
[mm] 

Diameter 
[inch] 

Mass 
[g] 

43 37 1.45 8806
67 30 1.17 7209
10 25 1.00 672
71 19 0.75 2009
94 15 0.61 1429

285  20125
 
Bond’s wok index procedure, as applied at the Comminution Laboratory of the Faculty of Applied Earth 
Sciences of Delft University of Technology, is given on the next page.
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Bond’s work index determination 
 
The following procedure must be maintained. Before starting, make sure all equipment is available and 
clean. You will need: jaw crusher, roller mill, (both for feed preparation), dry screening sets, Bond mill, and 
a balance. It is advised to wear safety goggles, hearing protection and dust mask.  
 

1. Crush about 4 kg feed sample down to <0.83 mm (20 mesh) with jaw crusher (first stage) and roller 
mill (second stage). 

2. Select screen size X for which Wim must be determined. Examples 0.208 mm (65 mesh) or 0.417 
mm (35 mesh). 

3. Determine size distribution of the crusher product (balance and screen set). Include the screen of 
mesh size X in the screen set. This is the feed of the Bond mill. Use Table 3.5.4, feed columns. The 
sieving procedure given in Section 1.9 can be used. 

4. Take 700 cm3 of ore and determine its mass. This is Mfeed. Put it into the mill. Later, exactly this 
mass must be fed to the mill for each cycle.  

5. Select the initial number of rotations (nin). Indicative values: nin=100 for fine grinding (0.208 mm = 
65 mesh); nin=50 for coarse grinding (0.417 mm = 35 mesh).  

6. Close the mill, put in horizontal position, set counter to 0, start the mill.  
7. Stop the mill after having reached the required number of rotations ni  (ni=nin for the first cycle).  

Turn the mill upside, vertically. Replace the lid by the basket. Turn the mill downwards vertically, 
collect the grinded material, and switch on the mill until it is empty.  

8. Screen the material at the size selected at (4). Use two larger screens on top to reduce excessive 
mechanical load on the selected screen. 

9. Determine mass of the oversize, and add feed material (<0.83 mm = 20 mesh) until you reach again 
Mfeed.  

10. Determine mass of the undersize of the ground material. In the feed material (<0.83 mm = 20 mesh) 
there already was a percentage of material <X.  Use the size distribution, determined at 2, to 
determine this percentage and calculate the mass of the material <X as originally present in the feed. 

11. Determine the following and add to Table 3.5.3: 
a. Number of revolutions of the mill (nin) 
b. Mass of the undersize (M<Xtotal column) 
c. Mass of the undersize that already was present in the feed (M<Xfeed) 
d. Subtract c from b and put to (M<Xnett) column. 
e. Calculate grindability Gbp=(M<Xnett)/nin and put in the right column, being the mass of the 

newly generated <X material per revolution. 
12. At step (8) original (<0.83 mm = 20 mesh) feed material was added. Calculate the mass of the 

percentage of this material <X and add to the next row of Table 3.5.3 at the (M<Xfeed) column. 
13. Calculate the Ideal Potential Product with IPP=Mfeed/3.5. Bond’s method assumes that except the 

100% feed in the product, there is a circulating load of 250%, hence totalling 350% or a factor 3.5. 
14. Calculate the number of revolutions for the next cycle with ni=(IPP-M<Xfeed)/Gpb. M<Xfeed was 

determined at step (11). 
15. Repeat step 5...13. Gpb will increase or decrease. After it has reached its highest or lowest point, do 

another two cycles to verify the validity of the maximum or minimum. 
16. Determine size distribution of the product of the final cycle using balance and screen set (use Table 

3.5.4). The sieving procedure given in Section 2.9 can be used. 
17. Plot both size distributions from Table 3.5.4 on Rosin Rammler paper (Fig. 3.5.3). Determine from 

both d80. 
18. Calculate the (laboratory) work index Wim in kWh/t from 

0.23 0.82

80 80

49.1

10 10
'

im

bp

W

X G
d d

=
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

      (3.5.8) 

with X the size determined at (4), Gpb the average of the Gpb’s of the three lowest or highest cycles, 
d80 the 80% cumulative undersize of the feed and d’80 of the final product. See Section 3.5.1 for 
determination of the power draw and mill dimensions based on Wim. Note that Eq. 3.5.8 gives the 
value per metric ton (1000 kg). Many literature date give values pere short ton (1 st = 907.2 kg).  
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Table 3.5.3 Bond Index results, Cycle progress table. 
 
Cycle 
No. 

Number of 
revolutions 

M<Xtotal 
[g] 

M<Xfeed 
[g] 

M<Xnett 
[g] 

Gbp 
[g/rev] 

1      
2      
3      
4      
5      
6      
7      
8      
9      

 
Feed d80= ____ μm 
 
Product d’80 = ____ μm 
 
Gpb = _______ g/rev 
 
Wim = _______ kWh/t (Eq. 3.5.8)  

 
 
 
 
Table 3.5.4 Bond index results, size distribution tables of feed and final product (to be used for RR paper, 
Fig. 3.5.3). 

 
Mass of feed = ________ g 
 
% smaller as X in feed = ______ % 
 
 Ideal Potential Product (IPP) = _______ g 

 
Screen 
[μm] 

Screen 
[mesh] 

Feed 
[g] 

Feed 
[%] 

Feed 
[Cum. %] 

Product 
[g] 

Product 
[%] 

Product 
[Cum. %] 

        
        
        
        
        
        
        
        
        
        
 Total:       
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3.5.3. Grinding efficiency 
 
Bond’s and Rittinger’s relationship show an increase in Wm (mass specific grinding energy) at a decreasing 
particle size (Fig. 3.5.1). For fines, the fundamental reason is the increasing depletion of Griffith flaws at 
decreasing sizes (see Section 1.4).  For the intermediate size range up to 10 mm the decrease is caused by the 
difference between individual load of particles (crushers, >10 mm) and collective load (grinding). In the 
latter case much energy is lost due to friction. Friction losses increase with decreasing size. 
 
The efficiency η of comminution can be defined in different ways (see also Section 1.4.1): 
 

Consider the increase in surface energy (2γΔA) and relate to the consumed grinding energy Wm: 

mW
AΔ

=
γη 2

1 ≈ 0.1...1% 

If in addition to the increase in surface energy, structural changes of the flaws are included: η2 ≈ 1...2%  
If losses due to plastic deformation are also included: η3≈1...12% 
When all energy, excluding friction, that is needed for size reduction (Wv) is related to grinding energy 

Wm: η4=Wv/Wm 
 
The latter efficiency definition applied for some size reduction equipment gives: 

 
 η4 (%)
roll crusher 70...100
impact crusher and mills 25...40
roller mill 7...15
ball mill 6...9
pneumatic stream mills 1...2
 

 Losses are due to: 
Plastic deformation of particles 
Plastic deformation of crusher/mill and media surface 
Friction 
Elastic deformation not leading to breakage 
Kinetic energy of material 
Machine wear 
Generation of noise and vibration 
 

Fig. 3.5.4, left, shows typical generalized curves from practice illustrating what occurs to mill power draw 
(Wm) as product size changes during grinding of an ore with constant work index Wim. Fig. 3.5.4, right, 
illustrates typical relationships between Wm and feed tonnage when ore with a varying work index is treated 
in a rod, ball, or SAG mill. 
 
The grinding medium has a significant effect on the grinding energy Wm. For crushing it is always air, but 
grinding is employed wet as well as dry. From grinding experience it is known that: 

Wwet ≈ ⅓Wdry 
Wwet > Wwet + Grinding aids 
Wdry > Wdry + Grinding aids 

Grinding aids are surface-active chemical agents that lower surface energy γ. For dry grinding they lower 
interaction forces between particles (dispersion effect) resulting in: 

No agglomeration (better dispersion, looser packing op particles) 
No sticking to the mill wall and media  

 
As grinding aids certain alcohols, amines and fatty acids of intermediate chain length (to ensure sufficient 
spreading over the large material surface) appeared favourable. For wet grinding they have similar effects, 
but the mechanism is of more complex nature involving ion-ion interaction, electrical double layer, pH etc. 
In water there is a better dispersion and less friction, due to which water as medium has a similar effect as 
grinding aids for dry grinding.  
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Fig. 3.6.1 - Typical wet closed loop grinding circuit for sulfidic ore(l). Ball mill – screw classifier wet closed 
loop circuit with two parallel lines (r) [TU Delft / SME].  
 
 
3.7. Wet grinding circuit flow sheets 
 
In this section an overview is given of wet grinding circuit flowsheets, based on the description by Mular et 
al., 1982.  
 
3.7.1 Wet open circuits 
 
In wet open circuits water and ore are fed to the mill and the final product is direcly discharged without 
classification. (S)AG, pebble, rod, ball or tube mills may be operated open circuit (Fig. 3.7.1, Fig. 3.7.2, left). 
Tube mills (Fig. 1.3.16), often compartimented, are especially suitable for open circuit operation. A typical 
application is limestone grinding in wet cement plants. Two mills in series may give comparable results (Fig. 
3.7.1, r). Advantages of wet open circuits are: 
 

Minimum equipment requirement (low investment) 
High pulp density. This is favourable when the mill product is leached, e.g. in uranium and gold-silver 

ores. 
 
Further their application is particularly favourable when: 

Reduction ratio, n, is only small 
Size reduction to a coarse natural grain size, e.g. grinding of cemented sandy rock 
Flotation middlings are returned to the mill 
Particle size distribution is uncritical (over- and undersize can be tolerated) 

 

Fig. 3.7.1 - Wet open circuit flow sheets [SME]. 
 
 
3.7.2 Single-stage wet closed circuits 
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Wet closed circuits efficiently produce a product with controlled top size and minimum overground 
material, and are therefore most commonly applied in mineral processing. The classifier (cyclones in Fig. 
3.7.2) returns the oversize into the mill.  
 

 

 
Fig. 3.7.2 - AG mill open circuit (left). Rod and ball mill single stage closed circuit (middle & right) [SME]. 
 
 
Single-stage closed circuits can be used with all type of mills and wet classifiers. Applications are primary 
grinding and regrinding. Single-stage primary rod or ball mill grinding is typically applied for tertiary 
crushed ore. Sometimes (S)AG mills are used for direct grinding of primary crusher output to final product 
size (Section 1.3). The benefits are simplicity and hence low investment and maintenance costs. 
Disadvantages may be low flexibility and lower grinding efficiency (= higher energy consumption). 
 
 
3.7.3 Multi-stage wet open circuits 
 
Multi-stage wet open circuits have two or more mills and one or more classification stages. Advantages 
compared to single-stage circuits are a better optimisation for a specific application and higher efficiencies.  
 
Rod/ball mill 2-stage closed circuits are traditionally the basic ore grinding circuit following two- or three-
stage crushing (Fig. 3.7.3, left). Power draw per tonne of the ball mill stage is about twice that of the rod 
mill, hence often two ball mills are applied downstream a single rod mill.  
 
Ball/ball mill 2-stage closed circuits are mainly used when application of a rod mill is unpractical or less 
economic (Fig. 3.7.3, right). This circuit requires less floor space and has higher interchangeability of parts.   
 
Rod/pebble mill 2-stage closed circuits may be applied for various ore types. A typical application is the 
grinding of gold ore. The higher capital costs of a pebble mill (per unit of capacity) may be compensated by 
the lower grinding media cost, which in some cases can be screened from the feed or domestically purchased 
at low cost. 
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Fig. 3.7.3 - Rod/ball mill 2-stage closed circuit (left). Ball/ball mill 2-stage closed circuit (right) [SME]. 
 
2-stage circuits with 2-stage classification may be applied  for better grinding control and less overgrinding, 
albeit rarely (Fig. 3.7.4, left). Two-stage wet closed circuits with intermediate treatment are favourable 
when some degree of concentration is already possible at relatively coarse sizes (Fig. 3.7.4, right). A typical 
application is the grinding of magnetite ore. In this case the intermediate concentration saves considerable 
grinding effort. Instead of magnetic concentration, gravity separation can be applied as well. Examples are 
gold, lead-zinc, copper ore and barite. 
 
 

 

Fig. 3.7.4  - 2-stage wet closed circuit with 2-stage classification (left) and with intermediate treatment 
(right) [SME]. 
 
 
AG mill–screen-pebble mill–classification circuits are used to grind ore without steel media (Fig. 3.7.5, 
left). Run-of-mine or primary crusher product is fed to the AG mill. The screen separates the pebble grinding 
media, an intermediate size for return to the mill, and an undersize ball mill feed. The pebble media and 
undersize are fed to the pebble mill for fine grinding.   
 
ABC circuit: An AG mill-Ball mill-Crusher-classification circuit is designed to screen out the ≈25mm to 
≈75mm fraction as oversize from the outlet that will not grind autogeneously (Fig. 3.7.5, right). Part of it is 
crushed and returned to the AG mill. The undersize is fed to a ball mill – classifier circuit. The advantage is a 
reduction in grinding media consumption and a more efficient use of them.  
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Fig. 3.7.5  - Autogeneous and pebble mill wet closed circuit grinding (l). ABC circuit: Autogeneous-, Ball 
mill, Crusher, classification circuit [SME]. 
 
 
A SAG mill-ball mill-classification circuit is popular because of favourable economics. It replaces 
secondary and tertiary crushing and screening. Primary crusher product is directly fed to the SAG mill where 
it is reduced to about 19...13 mm (Fig. 3.7.6, left). The SAG mill product is further reduced in a ball mill-
classification circuit down to product size. The grate discharge (Fig. 1.3.10, right) of a SAG mill effects an 
“internal” classification. Ports in the grate allow a limited amount of smaller, worn, balls and coarse ore to 
pass to a magnet that removes the balls for use in the ball mill or for discarding. The remaining coarse ore 
returns to the SAG mill. 
 
 
3.8. Dry grinding circuit flow sheets 
 
The largest dry grinding operations are for iron ore and cement. Other important applications are the grinding 
of pulverised coal fuel for firing boilers, and the grinding of industrial minerals like barite, clay, feldspar, 
silica, talc etc.  
 
Rod mill, ball mill, tube mill, pebble mill –classification closed circuits are the prevalent type of dry 
circuits, applied for a wide variety of materials. The flow sheet is similar to the one shown in Fig. 3.7.3, 
right. 
 
Dry (S)AG-classification closed circuit grinding is applied for iron ore grinding, though recently wet 
grinding gains in popularity (Fig. 3.8.6, right). Both AG and SAG mills are used, depending on ore 
characteristics. Air classifiers are described in Chapter 2. 
 
Dry roller mill-classification closed circuits are mainly applied for pulverised coal or barite for drilling 
mud. In coal grionding the operation can be combined with drying by heating the air. The circuit is similar as 
the one shown in Fig. 3.8.6, right. 
 
Impact mills can be operated open circuit or in closed circuit with screens or air classifiers.  
 
A hammer mill has an internal screen to control top product size, and therefore is generally operated open 
circuit (Fig. 3.2.7, left). 
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coarse fraction to be returned, B the crusher or mill product (hence classifier feed) and P the product of the 
circuit.  

 
Fig. 3.9.2 - Closed circuit grinding. 

 
C, the circulating load is defined as percentage of the feed: 

F
RC %100=     (3.9.1) 

C can be considerable, as mentioned. When the mill generates a product that contains a fraction r of material 
that is too coarse for the product, and when the classification efficiency is E, finally an equilibrium will 
develop with 

n

n

E
r

E
r

E
rR +++= ...2

2

  (3.9.2) 

R<1 and  r/E<1, hence Eq. 3.9.2 converges and with n →∞ it follows: 

E
r

E
r

R
−

=
1

    (3.9.3) 

For instance, R≈0.33 with r=0.2 and E=0.6, the classifier needs to process at a capacity of B=1.33F t/h. In 
practice monitoring of B is important to detect undesired changes and look for the cause of it to be able to 
correct in time. B could be determined directly by continuously weighing, but this is not always practical, 
especially not in wet circuits. Then F, B, R, and P are sampled and a screen analysis is made, determining the 
undersize fractions fi, bi, ri en pi of the applied mesh size mi. From a mass balance it follows that 
 

F = P 
B = P + R 
Bbi = Ppi + Rri 

 
and hence 

ii

ii

rb
bp

F
RC

−
−

== %100%100   (3.9.4) 

In practice this calculation is made using more than one mesh size mi. When they all indicate approximately 
the same C, the system is in steady state. In the other case the data can not yet be used to control the proces. 
 
The flowsheet of Fig. 3.9.2, left is improved by directly classifying the feed before milling. This is shown in 
Fig. 3.9.2, right. With O the classifier oversize, it is obvious that in this case 
 

F = P 
O = R 
Ffi + Rri = Ooi + Ppi 

 
More detailed procedures are available in the literature, e.g. Weiss, 1985, pp.30.7.  
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3.10. Proceess control 
 
In plant opeeration typicaal control objjectives are ((Wills, 1988): 
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Two important modelling approaches are discussed: matrix modelling and discrete element modelling 
(DEM). Matrix modelling is especially useful for simulation and control. DEM modelling provides powerful 
simulations about grinding kinetics, power draw and the effect of mill design (e.g. liner profile selection). 
 
3.11.1. Matrix modelling 
 
A matrix model considers the grinding process as a number of consecutive size reductions or grinding stages. 
The product of a stage is the feed for the next. During grinding, the change in particle size distribution of the 
material can be studied as function of the number of consecutive stages. The longer it is ground, the finer the 
comminuted material. Discrete functions describing size distribution and grindability are assumed.  
 
A grinding stage can be defined as a specified number of mill revolutions, or as a specified time interval. 
Each stage comprises two operations: 
 

Selection of particles for crushing. Each particle has a specific probability of being crushed during a 
grinding stage. 

Breakage of the selected particles. 
Often a third operation is considered (closed circuit grinding): 

Classification of the particle population after crushing 
 
Selection of material for crushing is represented by selection function Si. Si indicates the percentage of 
fraction i of the feed that is indeed crushed during a single stage. 
 
For describing the crushing result, crushing function Bij is used. Bij is a distribution function and indicates the 
percentage of fraction j of the feed that transfers to a smaller fraction i of the product as a consequence of 
fracture during a single grinding stage. 

 
Fig. 3.11.1 - Product and feed material described in matrix format, with 0<d4<d3<d3<d1 (left). Size 
reduction of a single stage (right). 

 
 
The model is based on a matrix description of particle size distribution of feed and product. At least 4 
different size classes di should be defined (i=1...4), representing the particle size range of both feed and 
product. d1 represents the largest size class and d4 the smallest. The feed is described as a vector f (with 
Σfi=100% and fi=mi/Σmi) where each element fi is the percentage of the feed mass having that size interval, 
expressed in the geometric mean of top and bottom size of the fraction, or SQRT(dtop*dbottom): 
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The product vector p (with Σpi=100%) is described accordingly: 
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More than 4 size classes allow more accurate modelling, on condition such data are indeed available. A 
grinding matrix X can describe the size reduction of the feed f to product p:  
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xij is the percentage of class j of the feed that transfers to class i of the product. As matrix equation it is  
X*f=p. It fully describes the grinding process when X is known. X is composed of: 
 

Matrix S describing particle selection 
Matrix B describing breakage function 

 
Matrix S selects the part of f that is crushed in a single stage: 
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or S*f. In words; the percentage of material that is indeed crushed may vary depending on the size class of 
the feed. In general a higher percentage of the coarser classes is crushed relative to the finer ones, hence 
s1>s2>s3>s4. S*f is crushed according to breakage function B. (I-S)*f is the material that remains uncrushed 
during the same stage (I is the unity matrix). 
 
The part of f that is selected for breakage by S is crushed according to the breakage function B. Matrix B is 
determined by the following formula, which is a modified Rosin-Rammler function: 
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Without classification the model for a grinding process is as follows: 
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or B*S*f + (I-S)*f = p. Calculation example (3rd row): p3 = B31S1f1 + B32S2f2 + B33S3f3 + (1-S3)f3. It can be 
rewritten as (B*S + I-S)*f = X*f = p.  
 

Matrix C describing classification of the population after each grinding stage 
 
To define classification matrix C we introduce the feed of the classifier as q, the fine product as p and the 
coarse fraction as C*q. The fine product of the classification is given as (I-C)*q = p, or 
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times on single processor workstations. We give a summary of the description of the 2D DEM method as 
described by Cleary (1998).  
 
DEM simulates collisional interactions of all particles with each other and with their environment (mill 
inside surface). For all objects the equations of motion are solved. Besides, boundary geometry of liner and, 
when present, lifters needs to be modelled. Simpler models solely model spherical particles and media. 
Arbitrary shaped objects can also be modelled, e.g. by discs or super quadrics of general form: 

n
n

n s
A
yx =⎟
⎠
⎞

⎜
⎝
⎛+   (3.11.2.1) 

n determines sharpness or blockiness, smoothly changing from a circle to a square as n increases. A is the 
aspect ratio with semi-major axis s. With A up to 10:1 and sharpness up to 20 many essential elements of 
real particle shapes are captured. The particle population is subdivided into groups, with each diameter, 
density, aspect ratio, sharpness and material properties specified. These properties can be distributed 
uniformly, normally or specified (e.g. Rosin-Rammler) as required. 

 
Fig. 3.11.3 - Spring and dashpot contact force model (normal direction) and incrementing spring 
and dashpot limited by sliding friction (tangential direction) [Cleary]. 

 
Collisional forces are determined by the amount of particle overlap Δx, vn the normal, vt the tangential 
relative velocities. A linear spring-dashpot model can be used for the collisions (Fig. 3.11.3). The normal 
force Fn consists of a spring to provide the repulsive force and a dashpot to dissipate a proportion of the 
relative kinetic energy: 

nnnn vCxkF +Δ−=    (3.11.2.2) 
kn, the stiffness of the spring in normal direction, determines the maximum overlap (typically 0.1...1% with 
106<kn<107). The normal damping coefficient Cn is chosen to give a required coefficient of restitution ε: 

nijn kmC γ2=    (3.11.2.3) 

with 
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+
=    (3.11.2.5) 

mij is the reduced mass of particles i and j with masses mi and mj respectively. It can be derived from the 
analytical solution of Eq. 3.11.2.2 for two particles. In general the same values for ε are used. 
 
The tangential force is given by 

{ }∫ += ttttnt vCdtvkFF ,min μ  (3.11.2.6) 

where the integral of vt over the collision behaves as an incremental spring that stores energy from the 
relative tangential motions and represents the elastic tangential deformation of the contacting forces. μ is the 
friction coefficient, Ct the tangential damping coefficient. The dashpot dissipates energy from the tangential 
motion and models the tangential plastic deformation of the contact. The total Ft (given by the sum of the 
elastic and plastic components) is limited by the Coulomb frictional limit at which point the surface contact 
shears and the particles begin to slide over each other. A DEM algorithm has three essential parts: 
 

 101



A search grid is used to periodically build a particle near-neighbour interaction list. The boundary 
objects appear as virtual particles. Using only particle pairs in the near neighbour list reduces the 
force calculation to an O(N) operation, where N is the total number of particles.  

The collision forces on each of the particles and boundary objects are evaluated efficiently using the 
near-neighbour list and the spring-dashpot interaction model (Fig. 3.11.3), and then transformed into 
the simulation frame of reference.  

All the forces on each of the objects and particles are summed and the resulting equations of motion are 
integrated: 

ii ux r&r =   gFu
j iji

rr
&r += ∑  (3.11.2.7) 

ωθ =i
&   ∑= j ijMω&   (3.11.2.8) 

where xi, ui, and Fij are position, velocity and collision forces on particle i, θi and ωi are the particle 
orientation and spin produced by the moments Mij, and g the gravity vector.  
 

The integration scheme is a second order predictor-corrector. Between 20 and 50 time steps are required to 
accurately integrate each collision, hence a small Δt is needed (10-3...10-6 s), given by 
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 (3.11.2.9) 

where Umax is the maximum particle velocity, dmin the smallest particle diameter and ns the number of time 
steps between searches. 
 
After running a DEM simulation the positions, velocities, orientations and spins of all particles and objects 
are know. Before these disordered data can be interpreted they need to be binned, possibly smoothed and 
displayed in an informative way. The smoothing is necessary due to the discrete nature of the particles, 
resulting in extremely spiky data. Fig. 3.11.4 shows a 2D simulation of a 5m-diameter ball mill with 
uniformly distributed steel balls between 50 and 200 mm and ten times more rock particles (of circular 
shape) between 5 and 50 mm at variable rotation speed. The motion of the charge can be studied in detail as 
function of mill design and rotation speed. 

 
Fig. 3.11.4  - “Snap-shot” of simulation output of SAG mill with a charge of rocks and balls. ψ=0.6 (a), 
ψ=0.7 (b), ψ=0.8 (c), ψ=0.9 (d) (ψ=n/ncrit) [Cleary]. 
 
Power draw and torque of the mill can be predicted (Fig. 3.11.5). To the left the instantaneous power draw 
during 3 minutes is shown, having an average of 300 kW per meter mill length (white line in the middle). 
The irregular and high frequency fluctuations reflect a highly impulsive and unsteady flow of the charge. 
Fig. 3.11.5, right, shows variation of torque and power with mill speed ψ. At increasing ψ, as the amount of 
cataracting and then centrifuging increases, the balance of the charge improves and the torque required to 
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4. AGGLOMERATION 
 
[This Chapter is a shortened reproduction of Chapter 11, Vol. 1 (Weiss et al.) by Fred D. DeVaney] 

 

Introduction 

The term agglomeration is used to describe processes whose goal is to form balls, briquettes, nodules, flakes, 
or other sized shaped particles from loose, usually fine, incoherent particles. In practice it includes such 
varying processes as the briquetting of coal dust and other substances, the balling and induration (heating) of 
such nonmetallics as cement, fluorspar, lightweight aggregates, etc. Agglomeration processes are of 
particular value to the iron and steel industry where the nature of the primary reduction process, the blast 
furnace, requires for best results a burden essentially free of fines. This is a change that has taken place since 
about 1960. Prior to that time many fine unsized ores were fed to the furnace. The development of the 
pelletizing process gave to the industry a chemically controlled closely sized product that increased the 
production rate and reduced the costs so much that unsized fines are seldom used in modern furnaces. Steel 
plants produce many fine sized waste products such as fine dust (fine ore coke and gangue) and mill scale. 
These products, which have a valuable iron content, are usually sintered directly at the plant for reuse. Fine 
sized ore concentrates are usually pelletized at the mine and shipped as pellets to the steel plant. Common 
practice in some areas producing natural high grade ores is to screen the ore at the mine to about 10 mm. The 
oversize is shipped “as is” and constitutes blast furnace feed. The <10 mm fraction may be shipped to the 
steel plant where it may he sintered or otherwise agglomerated. At some mines the fines may be pelletized 
prior to shipment. With the development of large ocean ore carriers, and with the transportation of slurried 
concentrates or fines, a trend has developed of constructing large pelletizing plants or other types of 
agglomeration plants near large consumption centers (i.e. in the Netherlands or in Japan) where ores of many 
types are brought together, ground if necessary, blended, and agglomerated.  

 
4.1. Briquetting 
 

Coal briquettes Briquetting press in action 
 
Briquetting is one of the most common methods of agglomeration. Large tonnages of coal, coke and 
charcoal, quicklime, phosphate ore, iron ore, mill scale, blast furnace flue dust, sponge metals, cast iron 
turnings, salt, and many other substances are briquetted. Either by use of a suitable binder or with sufficient 
pressure, possibly in conjunction with high temperature. Nearly any fine solid material can be made into 
reasonably strong briquettes. 
 
Various types of operations and of presses are included in the general category of briquetting. These are (1) 
briquetting, (2) compaction, extrusion, and (4) tableting. 
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Fig. 3. Ring roll briquetting press. 

 
Fig. 4. Pellet mill. 

 
Briquetting; Roll Type Machine 
 
This section is primarily directed toward making briquettes with roll-type machines, but much of it will be 
pertinent to the other compaction operations. Roll-type machines are the most widely used briquetting and 
compaction devices in the mineral industries because they can agglomerate large tonnages of solids at 
relatively low cost. 
 
Mechanism of Briquetting 
 
Flow of Material. The material to be briquetted must be reasonably free-flowing, both to feed into the press 
at a uniform rate and, even more importantly, to allow the particles to move together during compaction into 
a dense close-packed arrangement where the compressive and shear stresses are distributed reasonably 
uniformly throughout the briquette’s interior. 
 
If internal friction of the material is too great, some parts of the briquette are insufficiently compacted, with 
parts of the mold or pocket remaining unfilled, while other parts get overcompacted, with broken grains and 
tension cracks resulting due to excessive pressure and elastic springback on release of the pressure. 
 
Lubricants can be blended with the feed material to make it more free-flowing, particularly when under 
compression. Water is the most common lubricant, but other liquids and solids are often used also in 
proportions typically ranging from 0.5% to 2%, with fine or porous particles requiring the larger proportions. 
Some typical briquetting lubricants are water, stearic acid, calcium of magnesium stearate, paraffin waxes, 
minerals oils, dry starch, graphite and molybdenum disulfide. Most binders also serve as lubricants. At the 
high pressures required to briquette many minerals and metal powders, the solid lubricants such as graphite 
or the metal sterates are more effective than oils or liquid lubricants. 
 
Binding Action. A number of physical and chemical mechanisms serve to bind solid particles together when 
they are compacted into a briquette.  
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Fig. 5. Screw type extrusion press. 

 
Fig. 6. Tablet press. 

 
A binder mixed with the fine solids may act as an adhesive, sticking to the surface of each particle and 
holding adjacent particles together by the binder’s surface tension. In this case the binder exists as a film, and 
as it must coat each particle, thorough mixing is required to make it function properly. Water often acts as a 
binder in this manner as well as providing lubrication, and so do resins and other sticky materials. 
 
Mixing the solids with a higher content of a tacky viscous fluid (particularly one that subsequently hardens 
due to cooling or chemical action) provides a matrix which cements the particles when they are pressed 
together. Pitches and resins usually act as matrix binders as do mixtures of molasses and lime, spent sulfite 
liquor, and other “sticky” fluids. 
 
Proportions of matrix binders needed to make satisfactory briquettes depends on the fineness of the solid 
particles, their porosity, and density. Coal can be briquetted effectively when mixed with 6% pitch, while 
some fine porous chars require as much as 30% pitch for proper briquetting. In order to coat the particles 
uniformly, the mixture must be heated to the softening point of the pitch; usually 50°C to 70°C. 
 
The principal characteristics needed by matrix-type binders are sufficiently low viscosity for proper mixing, 
a tendency to stick to the solid particles, and enough viscosity to hold the particles together after the mixture 
is pressed into briquettes. Pitches (i.e., coal tar pitch or asphalts) are usually heated to make them fluid 
enough for mixing, and the finished briquettes are allowed to cool to harden the matrix of binder and so 
impart strength to the briquette. Subsequent processing steps required of the briquettes may dictate more 
specific binder requirements. 
 
Some binders have a solvent action and dissolve materials from the surface of the particles to form “solution 
bridges” which become solid bonds after the solvent evaporates, although the surface tension of the solution 
must hold the “green” briquette together until it dries. For example, 0.5% to 2% moisture is sometimes used 
to bond water soluble salts. 
 
While binding action has to be fast enough to enable the briquette to hold together as soon as it falls from the 
press, many binders do not develop their full required strength until the curing or post treatment takes place. 
Evaporation of a solvent-type binder, as noted previously, is one example of post treatment. Chemical action 
involving crystallization or polymerization may also strength a binding substance, particularly a matrix-type 
binder.  
 
It is difficult in some instances to distinguish the specific effect that a useful briquette additive may have. 
Water, for example, acts as a lubricant when added to clays and it also facilitates bonding. In other cases, it 
may function as a coolant, such as when a low melting organic material is briquetted. 
 
Binderless Briquetting. In recent years, improved presses capable of high pressures use the fact that certain 
solids “weld” together when compressed at high temperature or even at room temperature in order to 
briquette without binders. Crystals of alkali halides, particularly sodium chloride, tend to become plastic and 
flow under high shear stress. High pressures will bond them together. At higher temperatures, many other 
solid substances behave similarly and, in general, higher temperatures make solids less brittle and elastic and 
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so permit binderless briquetting of a wider range of materials and the use of lower briquetting pressures. In 
general, alkali metal salts, salts of calcium and magnesium, free metals, and plastic materials readily bond 
without binders, while use of higher temperatures and pressures permit binderless briquetting of many other 
mineral substances. 
 
Compaction enhances the sintering action of high temperatures, probably by forcing fused zones of a 
heterogeneous solid into close contact. Thus, a small quantity of finely divided flux is sometimes mixed with 
an ore to aid hot briquetting. Use of dolomite or lime help briquette steel mill scale is an example Fluxing is 
probably involved in the hot briquetting of oxide ores such as hematite. 
 
Iron ore can generally be briquetted at lower temperatures and pressures as its state of oxidation is lowered 
by reduction. 
 
Similarly, metals can be bonded into briquettes more readily than their oxides Thus, clean cast iron or steel 
turnings briquette readily, but formation of an oxide film by exposure to the weather makes the material 
unsatisfactory to briquette. However, before briquetting, the cutting oil on turnings must be removed, usually 
by heating to 120°C, but also by thorough washing, as the oil interferes with the metal-to-metal bonds 
formed by high pressure contact. 
 
Action of Roll Presses. Several concepts are useful for understanding the practical application of roll presses. 
 
Briquetting Pressure. In a roll-type press the actual pressure is indeterminate since the effective area against 
which the rolls press cannot be measured As a useful working definition or approximation, the pressure is 
often assumed equal to the force between the rolls divided by the projected area of one horizontal row of 
briquettes. This projected area is equivalent to the roll width times the circumferential pitch of the pockets. 
With flat-faced compaction rolls the pressure is approximately equal to the force between the rolls divided 
by a multiple of two to five times the thickness of the strip of compacted material. 
 
The shear stresses induced as a briquette moves past the point if tangency of the rolls cause the particles to 
move into a more closely packed arrangement and thus provides more effective action than static pressure 
applied as in a cylindrical die. 
 

 
Fig. 7. Angle of nip. 
 
Angle of Nip. This is the angle Φ in Fig 7 below which the rolls sieze the feed material and compress it. 
Tan(Φ) is equal to the coefficient of sliding friction between the roll’s surface and the feed material The rolls 
will therefore slide past the feed material which is in contact with them above the angle Φ; below Φ, the 
material moves at the same rate as the roll surfaces and is carried between them and compressed. 
 
Thus, to make a given size briquette there is a minimum roll diameter when gravity feed is used. Too small a 
roll diameter will not allow enough material to fall into the space included within the angle of nip so that the 
pockets in the rolls are not filled and the feed material does not get pressed sufficiently. 
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Also, with gravity feed it may be necessary to meter or limit the flow of feed, as too large a roll diameter can 
cause too much material to be drawn in, and this will spread the rolls excessively and make briquettes which 
are unduly thick with large web or seam areas. This Situation produces much fine material. 
 
Force feeding of the rolls with a variable speed tapered screw, as in Fig. 1, enables the proper amount of feed 
material to be metered or pushed between the rolls; it also permits use of smaller diameter rolls turning at 
higher speeds than is possible in a given case with gravity feed alone. 
 
Movement of Rolls. Roll loading and the resulting briquetting pressure are controlled by forcing the rolls 
together with adjustable springs or by hydraulic pressure (using an accumulator with the fluid kept under 
nearly constant pressure by a confined gas above a flexible diaphragm). Briquette presses are sometimes 
rated by the force necessary to spread the rolls, with up to 350-ton machines (roll 90 cm diameter). 
 
Generally the force pressing the briquette rolls together is best adjusted to the minimum needed to make 
satisfactory briquettes when the feed rate is just enough to spread the rolls apart slightly. In this way, the full 
roll loading bears on the briquettes, and any minor variations in feed rate can be tolerated without resulting in 
either unfilled pockets or the tension cracks from excessive pressure. Properly adjusted, the rolls should be 
spread from 1.5 mm to 10 mm, depending on their diameter and the size of the briquettes, and the movable 
roll will be observed to oscillate or “work” in and out slightly as it rotates. 
 
Discharge of Briquettes. For satisfactory performance briquettes must discharge cleanly from the roll 
pockets. Briquettes will not discharge properly if the feed material adheres to the rolls, if the pockets are too 
deep, if excessive binder is used, or, in some cases, if too much or too little pressure is applied. When the 
feed material adheres to the rolls, use of a lubricant may be helpful. 
 
 
Performance of Briquette Machines 
 
Briquetting equipment is developing toward larger capacities, greater pressures, and higher roll speeds. For a 
given capacity, machinery is becoming more intensive—that is, smaller and faster. Feed preparation is 
becoming more elaborate, too, particularly with use of higher temperatures and controlled atmosphere. For 
the high roll speeds, preliminary deaeration or densification by pressing the material between smooth rolls or 
by compressing with tapered screws is often employed just ahead of the briquetting rolls themselves. This 
precompression reduces the porosity of the feed material and the tendency of the gases pressed out of the 
pore spaces in the feed to blow back against the stream of incoming feed material and so cause irregular 
feeding of the briquette machine. Deaeration is particularly helpful when very fine particles are to be 
briquetted. 
 
High rates of production require careful metering of feed to the rolls, and the use of force feeding is now 
rather general (Fig. 1). 
 
Some briquette machines have the roll centerlines arranged in a vertical plane with a horizontal screw used 
for force-feeding. This configuration allows the feed material to drop directly into the scroll of the screw 
feeder at right angles to its axis without interference from the drive shaft. 
 
Power requirements for briquetting depend on the compressibility of the feed and on the pressures used. 
They cover a wide range: 
 

• Mixing (where binders and/or lubricants are used): 1.5 to 7.5 kW/t feed  
• Feeding: 0.4 to 4 kW/t feed  
• Briquetting: 1.5 to 20 kW/t feed  

 
Roll maintenance is one of the largest cost items in briquetting. With abrasive materials, high temperatures, 
and/or corrosive conditions, roll wear can be considerable. In practice, roll life varies from about 400 to 
30,000 hr or more. Actually, in briquetting organic solids such as di-methyl-terephthalate, rolls have lasted 
ten or more years, while extremely abrasive materials such as glass batch mixtures still await the 
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development of rolls which have an economical life. As the rolls wear, the pockets enlarge and the briquette 
production rate rises. However, with wear, the joint or web between the two halves of a briquette gets wider, 
and more fines are produced along with the briquettes. The generation of fines varies from about 5% with 
new rolls fed properly to as much as 30%, with the higher figure indicating worn rolls and cheek pieces. 
(Cheek pieces are the guards at the edge of the rolls which prevent the material from escaping to the sides.) It 
is generally necessary to screen fines from the briquettes and recycle them back through the rolls. Many 
briquette machines are equipped with replaceable segments for the wearing surfaces of the rolls. These are 
quick and less expensive to replace and they can also be made of harder steel than is possible when the 
wearing surface or pockets is a tire shrunk onto the supporting roll. 
 
Since briquette machines are usually driven at constant speed, their production rate is also constant. Most 
installations therefore consist of two or more machines in parallel with variations in load accommodated by 
stopping one machine periodically. This practice requires surge storage of feed material upstream from the 
briquetting operation The process downstream from the briquette machines must also be able to handle 
changes in the flow of material as the machines are stopped and started. 
 
Specification of Briquetting Machinery 
 
Though the general principles of briquetting are fairly clear, to assess suitability for a particular application 
and to specify specific equipment usually requires an actual test. Fortunately, unless the pretreatment is 
complex, material can be readily tested in a meaningful manner on pilot scale facilities available in the 
laboratories of most manufacturers of briquetting machinery. If binders are not required, as little as 10 kg of 
material may be sufficient to supply all of the data necessary to specify a commercial size briquette machine. 
It is important to recognize that the briquette machine has only one function: to apply pressure to the 
material. If pressure alone will produce a satisfactory product, it is necessary to determine only what pressure 
is required. The manufacturer then need only know, in addition, the required rate and briquette size. 
 
If pressure alone will not produce a satisfactory product, the conditions must be altered by adding binders or 
lubricants, increasing temperature, or otherwise establishing suitable process conditions to permit pressure to 
bind the fine particles together. A preliminary indication of how well a given material can be briquetted is 
also often possible by compressing the fines in a cylindrical die using a hand press. This procedure is 
particularly useful when briquetting is part of a bench-scale process development study. Other laboratory 
tests of the feed material can be helpful as well, but their use is not yet general.  
 
The size and specifications for briquette machines or compactors to provide a desired output can be 
estimated as follows: 
 

Volume of briquettes per revolution = πDWT 
 
where D is roll diameter (in m), W is effective roll width (width of the briquette pockets, in m), and T is the 
mean thickness of the briquettes or the thickness of a compacted strip. Thus the output of a roll press will be: 
 

Q = πDWTNρ 
 
where Q is in kg per min, N is rpm, ρ is density in kg/m3. 
 
Values of T can be estimated from the correlation given in Table 1 which relates briquetting pressure, roll 
diameter, and briquette size. These data approximate most briquetting situations. (The periphery of 
corrugated compaction rolls may have 20 to 30% more corrugations than Table 1 indicates). Note that use of 
lower pressures on a given machine can permit making larger briquettes. Roll speeds range in practice from 
about 5 to 100 rpm. 
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Table 1. Approximate Relation of Briquetting Pressure, Roll Diameter and Briquette Size 
 

Briquetting pressure 
(tons/cm2) 

Approx. no of pockets in one row 
around periphery of roll 

Ratio D/T* 

Low. < 1 36 30 
Medium, 1-4 48 40 

High, >4 72 60 
*D is diameter of roll and T is mean thickness of briquettes 

 
Table 2 shows capacities of typical briquetting machines for making salt (NaCl) briquettes having a density 
of 2165 kg/m3 and a roll speed of 25 rpm. In most briquetting operations the actual yields closely 
approximate the calculated capacity rates as the webs between the briquettes and the leakage of uncompacted 
material past the rolls are not included in the calculations. 
 
 
Table 2. Typical Briquette Machine Capacities 
 

Roll diameter 
 

(mm) 

Effective roll 
width 
(mm) 

Maximum force 
between rolls 

(tons) 

Appr. Capacity* 
 

(t/hr) 
130 50 10 0.15 
305 76 25 1.2 
380 102 50 2.5 
457 152 100 5.5 
610 203 150 12.5 

*For salt, with briquette density of 2165 kg/m3, roll speed is 25 rpm, and D/T = 60. 
 
In a typical compacting process, however, the yield of granular product of the desired size may be anywhere 
from 20% to 90% or more of the calculated throughput, depending upon the range of mesh sizes in the final 
product and the mechanical properties of the compacted material. The balance of the material is screened out 
and recycled to the granulator for further grinding or sent to the compactor for agglomeration. 
 
Typical Briquetting Processes 
 
There is no way to subdivide into consistent categories the vast number of materials that are briquetted 
commerically. However, a division based upon the approximate briquetting pressure illustrates the great 
range of conditions that these materials require. The briquetting pressure is assumed to equal the roll force 
divided by the projected area of one horizontal row of briquettes. 
 
Low Pressure Processes (<1 t/cm3). Many materials can be successfully briquetted at pressures under 1 
t/cm3. These include earthy iron ores, oil and other shales, laterites, phosphate ores, clayey bauxite, and 
materials in general that are plastic in nature and have high moisture contents (5 to 20%). Materials that are 
briquetted with matrix-type binders such as coal-pitch mixtures and pitch-ore mixtures also fall into this 
category. The mechanism of the briquetting process here is primarily one of pressing readily cohesive 
materials into suitable shapes with comparatively little change in density. Energy requirements are normally 
1 to 5 kWh per ton of briquettes, and roll costs usually range from €0.20 to €1.00 per ton of product. 
Lubricants are not normally used with low pressure briquetting processes. 
 
Medium Pressure Processes (1 to 4 t/cm3). Sodium and potassium chlorides as well as most typical ionic 
solids can be briquetted or compacted in this range of pressures. Oxides of calcium and magnesium are 
briquetted at the high end of this pressure range, whereas many organic solids are briquetted at the low end. 
The briquetting mechanism in this case is plastic flow of the crystals combined with crushing and 
rearrangement of the particles: thus, substantial changes in density occur during the briquetting process. 
These materials are mostly briquetted dry although small additions of moisture, 0.1% to 2%, or film-type 
binders are frequently employed to assist the process. Lubricants are generally beneficial but their use is 
often restricted by cost or the purity requirements of the briquettes. Typical energy requirements are 5 to 15 
kWh per ton briquettes, and roll costs vary widely from a few €ct to €1.00 or more per ton. 
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The term pelletizing in the mineral industry refers to processes in which fine concentrate or ore is rolled in a 
damp condition into balls which are then fired or indurated until they become hard (Fig. 8). Pelletizing 
consists basically of rolling fine moist ore or concentrates into balls and then firing these into hard pellets. 
These processes, of which there are several variations, came into commercial use in the late l950s, and their 
use has had a fast worldwide growth ever since. Prior to that time many fine unsized ores were fed to the 
blast furnace. The development of the pelletizing process gave to the industry a chemically controlled, 
closely sized product that increased the production rate and reduced the costs so much that unsized fines are 
now seldom used in modem furnaces. In 1976 the world pelletizing capacity was estimated on 162 million 
tons, with an additional 68 million tons under construction, making a total potential capacity of 230 million 
tons.  
 
This section only highlights the feed preparation and balling of pellets, or in other words the production of 
“green pellets”. Balling is usually a preparatory operation preceding some subsequent pyrometallurgical 
processing such as drying and induration. A notable exception is the use of balling to render fine powders 
dust free and free-flowing. The induration (firing) of pellets is covered by (pyro)metallurgical literature. 
 
 
Balling principles 
 
The term balling is that unit operation wherein finely divided powders are formed into larger agglomerates 
by the use of water or other liquid in balling drums or disks. Various types of binders are frequently used in 
addition to the liquid. The forces that hold together a green ball are: 

1. capillary forces in the liquid film  
2. adhesional and cohesional forces  
3. attraction between solid particles by van der Waal and electrostatic forces  
4. mechanical interlocking of the granular particles  

 
There is an important influence of the capillary forces of the liquid film in binding together the fine particles 
forming a green ball. A green ball of mineral particles acts as system of fine capillaries. It can be 
demonstrated that in a capillary tube the menisci are drawn in opposite directions by the surface tension. This 
results in a negative pressure on the liquid column corresponding to an equal positive pressure on the surface 
of the tube. These forces are believed to be among the major ones influencing the growth and strength of 
green balls of mineral particles. 
An optimum amount of liquid is necessary to produce maximum green ball strength. Sufficient liquid should 
be present to fill completely the void space among the particles, but not so much as to wet excessively the 
exterior surface. It can be demonstrated that excessive liquid weakens the capillary forces by submerging a 
green ball in liquid where it quickly disintegrates.  
 
Binders 
 
In the development of the iron ore pelletizing processes, literally hundreds of materials have been 
investigated for use as binders. Bentonite of the free-swelling sodium type has generally been the most 
satisfactory because of its usefulness in all phases of the process. That is, it provides green strength during 
formation and transport of the green ball, contributes to dry strength when the binding liquid has been 
removed, and may enter into the final indurated strength to some degree. A given balling problem must be 
evaluated according to the performance required of the binder. In the case of a need for green strength only, 
many binders may perform as satisfactorily as bentonite and at lower cost. 
 
Type of Binders. These vary widely and are dependent upon the performance required, availability, and cost. 
Among the more commonly used binders are bentonite, other clays, ferrous sulfate, lignin sulfite liquor, 
asphalt compounds, starches, calcium compounds, and sodium compounds. They can be grouped into four 
general types: 

1. soluable salts,  
2. bentonite,  
3. inorganic chemicals,  
4. organic materials.  
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Benefits of the Various Binders. These are dependent upon the process requirements. Balling systems in 
which water is the major binding liquid require a binder miscible with water. Other systems, for example, 
using asphaltic compounds, may have only a trace of water in the final green ball. In most cases, binders are 
used to form green balls of sufficient strength that can be transported and placed in a packed bed for further 
processing. Beds wherein the green balls are subjected to the weight of a deep column of material or the 
pressure of flowing process gases must not collapse as the binding liquids are removed. Such conditions 
require that the binders provide dry strength in the green ball. Calcium hydroxide used in some instances in 
iron ore pelletizing provides a flux which at high temperature results in the formation of slag bonds with the 
fired product 
 
Influence of Economics. A choice of binder often must be determined experimentally. For example the cost 
of bentonite varies greatly from place to place. Bentonite has largely replaced lower cost ferrous sulfate and 
calcium oxide in iron ore pelletizing operations because better product at higher production rates can be 
obtained with bentonite and it is overall a more economical binder. High value minerals such as chrome 
concentrates may justify the use of more costly sodium silicate binders which can produce green balls of a 
coarser size structure than water. 
 
Particle Size 
 
The particle size and size distribution are key factors in determining the ability to produce green balls of 
suitable strength and production rate. It is often found that additional grinding beyond that required for 
beneficiation is necessary to accomplish a satisfactory balling operation. An economic balance between 
additional grinding capacity and the use of greater amounts of binder or more costly binders is frequently a 
necessary determination. 
 
Surface Area. The binding forces within a green ball are enhanced by increasing fineness of material which 
results in a greater number of contact point and particle surfaces. Surface area and size distribution influence 
the growth mechanisms which occur in two distinct stages: 1) nuclei or seed formation and 2) pellet growth. 
In general, extremely fine powders of large surface area tend to form nuclei of small size often at the expense 
of final growth to the desired size. It may be found that such materials produce strong green balls so densely 
packed that subsequent processing, such as drying, may be impaired. In this case, the resistance to diffusion 
of the liquid vapour becomes so great that the green ball bursts. Excessively coarse materials, on the other 
hand, do not develop sufficient green ball strength to withstand the usual handling and may generate fines. 
 
Size Distribution. A proper size distribution within the green ball is necessary for green strength as well as 
for final indurated strength. It was found that the ease of agglomeration is proportional to the total surface 
area or to the number of contact points. The need for particles of different sizes to fill the interstices among 
larger particles leads to the concept of binary grinding. In this case, a small portion of the particles is ground 
to very fine size and admixed with the coarser material for balling. The concept may offer considerable 
grinding power savings. Conversely, it is desirable in some cases to increase the porosity of the green ball. 
For example, iron ores of high alumina content which result in green balls of such density that drying rates 
are impaired, may be improved by the addition of coarser particle sizes. The net effect of size and 
distribution of particles on porosity and green ball strength depends on the ratio of the particle diameters and 
proportions of each size fraction in the system. Porosity will be markedly reduced in a two-constituent 
system wherein the ratio of the diameters exceeds 4:1 and approximately 25% of the small constituent is 
used. The practical significance of size distribution is often experimentally determined because achievement 
of the ideal distribution is either too costly or complicated for most commercial operations. 
 
Ore Types 
 
The balling process has been used extensively in recent years in a wide variety of mineral processing plants. 
These minerals differ widely in physical characteristics which are also a factor in determining ballability of 
the materials. 
 
Particle Shape. The type of particles from which green balls may be made range from distinctly crystalline 
to amorphous. The particle shape influences the packing arrangement which can be achieved and the strength 
of the binding forces developed. Specular hematites, for example, exhibit tabular grains of generally large 
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crystal size which are more difficult to ball to suitable strengths than magnetite which has a cubical grain 
structure. Earthy hematites are mixtures of iron oxides and may contain crystalline hematite, magnetite, and 
products of weathering such as goethite which may be finely crystalline or amorphous. Such minerals are 
easy to grind and produce a size distribution and surface area favourable for balling. As discussed earlier, 
these minerals may produce green balls of excessive density. Unfavourable particle shapes may be improved 
by additional grinding, but power consumption may become excessive when the size is reduced beyond the 
natural grain size. Alternative methods include blending of easily ground minerals or binary grinding. 
 
Reagent Influence. Balling is normally one unit operation in an overall processing complex wherein the 
minerals are previously treated, for example, by flotation. Such processes may result in contamination of the 
particle surfaces by hydrophobic films or residual reagents which influence the surface tension of the binding 
liquids. A cleaning step may be used to remove the surface contaminates; however, the costs are often 
prohibitive and regrinding is a frequently used means of correcting the problem. It is thought that regrinding 
produces fresh uncontaminated surface as well as producing additional surface area to compensate for the 
reduced strength of the binding medium. Completely dry particle surfaces likewise impair balling and a 
prewetting mixer is often required to add a part of the balling liquid before the material enters the balling 
device. 
 
Growth Mechanism. Two distinct phases in ball growth occur: 1) nucleation or seed formation, and 2) 
growth or snow balling. The first phase can be described as a coalescence of the mineral particles by a liquid 
film into a small seed of 3 to 6 mm diameter. The second phase consists of addition of particles to the surface 
of the seed again by coalescence and by the mechanical packing force exerted by the balling device. The 
moisture content of the green ball is among the most important variables controlling the growth rate. 
Optimum moisture content at which the greatest strength can be achieved is related to the particle size and 
distribution, but is in the range of 9 to 10% for typical iron ore concentrates.  
 
Balling drums and disks are the most commonly used machines for producing green balls. Although the 
principles of operation vary somewhat, the objective in each is to mix the mineral particles and binding 
liquid so as to allow the particles to coalesce into a nuclei or seed ball. Further rolling supplies the 
mechanical force to arrange the particles in the closest possible packing arrangement for the given size 
distribution and particle shape. Details of construction and operation are given below. 
 
 
Feed preparation 
 
Balling. The first requirement in making a good fired pellet is make a good green ball. It is essential to base 
the proper size  consist of the feed material. A rough rule-of-thumb is that to be ballable the feed should have 
at least 65%, by weight, finer than 80 μm. A much better guide is to measure the amount of surface in the 
starting material. This is usually done with a Blaine indicator which measures the total area in cm2 per gram. 
The operable balling range is from 1100 to about 2500 cm2/g. At the coarser end of the range the material is 
somewhat granular and is difficult ball, and the balls formed have little strength. At the fine end of the range 
the balls become plastic and deform readily. Fine material with a Blame number of 2100 cm2/g or more also 
becomes difficult to filter 
 
After the feed has been ground to the proper fineness and filtered, is important that if water and additives are 
needed they be thoroughly mixed with the feed before introduction into the balling device. The moisture 
content is extremely important in making a good ball. The optimum moisture will vary with the material and 
the grind. With an iron ore concentrate having a Blaine surface of 1300 to 1400 cm2/g, the optimum moisture 
may be 8.5%. With a very fine material (>2000 cm2/g) the moisture may be 11.0 to 12.0%. Fortunately, the 
usual rotary vacuum filter, if operated properly, will give a moisture just under that required to make a good 
ball. The moisture of the filter cake should be held to 0.5% to 1.5% less than that required for balling. If the 
moisture content is too high to make good balls, there is little that can be done other than to discard the 
material or to soak up the excess moisture by increasing bentonite. This latter is a costly solution and also 
adds silica to the finished product. Additives such as bentonite are almost always added to the feed prior to 
balling, to improve the physical characteristics of the green ball and to prevent breakage during firing. The 
best practice is to thoroughly mix most of the additional water required and the additive prior to charging the 
material to the balling device. This is usually done with a conveyor belt mixer or by a separate mixer-muller. 
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The conveyor belt mixers consist of mixing wheels and sometimes a muller wheel positioned over the flat 
load-carrying portion of the belt, in an enclosure to contain flying material. A sketch of a typical Pekay belt-
type mixer is shown in Fig. 9. Such a mixer takes no additional floor space and results in substantially better 
bentonite utilization. This type of mixer is used in over 90% of the world’s plants. The adding of most of the 
water ahead of the mixer rather than in the balling device is an advantage, since large additions of water to 
the balling drum results in the production of some large, soft, and incompletely packed balls.  
 

 
Fig. 9. Typical Pekay belt-type mixer [Pekay Machine & Engineering Co., Chicago. Ill., USA] 
 
Some pelletizing plants secure a saving in bentonite and a uniformity of moisture by mechanically mixing 
the needed bentonite with the fiber cake and then storing the mixture in large table-discharge-type circular 
bins prior to feeding the balling device. In the usual practice of adding dry bentonite to the filtered 
concentrate directly ahead of the balling device, the total elapsed time from the adding of the bentonite to the 
feeding of the green balls into the furnace may be as little as 3 min. It is highly unlikely that the bentonite 
can take up its ultimate moisture content (approximately six times its weight) in this short time. At the Hilton 
mine at Shawville, Que, where large bins are provided for storing the blended magnetite filtered concentrate 
and bentonite for a period of hours, the amount of bentonite used is only 5 kg per ton, which is 40 to 60% of 
the amount used in the Lake Superior taconite industry.  
 
Years of experience have shown that green balls, to be satisfactory, must have a certain minimum green 
strength and plasticity to withstand the mechanical transfer and handling from the balling device into the 
pelletizing furnace. They must also possess a minimum dry strength to prevent their failure during the initial 
drying stages.  
 
Additives. At the high production rates demanded in present pelletizing practice, it is essential in most cases 
that additives be used to improve the quality of the green balls and to prevent serious dusting and exfoliation 
of the ball concentrate during the furnacing stage before it becomes heat hardened. The use of additives is 
not so essential with natural iron ores, since the size consist is different and where the drying rates must be 
kept necessarily low. 
 
A summary of the test methods used in the laboratories to measure the required properties is: 

1. Wet drop strength. Moist balls are dropped from a 45 cm height onto a steel plate until the first sign 
of failure occurs. The number of drops required to produce failure is recorded. 

2. Wet compressive strength. Moist balls are compressed to failure at a constant loading rate of 450 
N/min. The gross force required to produce failure is reported. 

3. Plastic deformation. During the compression test, the deformation as a function of load is 
continuously measured and recorded. The deformation expressed as a percentage of the initial load 
diameter is reported, both at fracture and at the 4.5 N loading point. 

4. Dry compressive strength. Wet balls are dried overnight at 120°C and then compressed to failure at a 
constant loading rate of 450 N/min. The gross force required to produce failure is reported. 
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The major problems in producing good balls for the pellet furnaces are to secure: 
1. uniform size of feed, 
2. uniform balling feed mixture, 
3. uniform addition of additives, 
4. good mixing of additives, 
5. maintaining clean screening surfaces (screens or trommels to give fines-free balls). 

 
The importance of all of these qualities cannot be overemphasized. The presence of even a small amount of 
fines (<6 mm) in the feed to the furnace will cause a high pressure drop across the pelletizing bed, uneven 
firing with resultant production of some poor pellets, and an increase in fuel consumption. Good screening at 
the balling device and even a rescreening with a roll-type feeder ahead of grate- type furnaces, with the 
rejection and recirculation of all < 6 mm material fed to the furnace, will usually pay big dividends. 
 
 
Balling practice 
 
Balling for production plants may be done in balling drums, balling pans or disks, or cones. Balling drums 
for large plants are usually 3 to 4 m in diameter and from 7 to 10 m long (Fig. 10b). They are rotated to give 
a peripheral speed of from 1.4 to 1.5 m/s. Some drums are provided with a variable speed control, but most 
drums, after experimental work is finished and the proper speed determined, are operated at a constant speed. 
The usual practice in pelletizing iron ores is to produce a finished ball that is in the size range of 10 mm to 16 
mm. Most producers aim at producing an even more closely sized ball, namely 12 mm to 16 mm. Balling 
drums are so operated that the balls are formed slowly and the discharge from the drum will contain material 
ranging from a size 16 mm down to 3 mm size. It is therefore necessary to size the discharge either by a 
trommel integral with the drum or by a separate vibrating or roller screen. These openings, in common 
practice, are such as to give a separation at about 10 mm. The oversize is the feed to the pelletizing furnace 
and the undersize is returned to the head of the balling circuit where it is mixed with new feed and returned 
to the balling drum. The amount of undersize return is usually about twice the amount of finished balls. 
Balling drums are usually built with an expanded metal lining spot-welded to the shell. This is done so that a 
layer of compacted concentrate is built up on the shell, on which the balls form, are rolled, and compacted. 
On a smooth steel shell the material would simply slide and not roll. The metal mesh lining keeps the built-
up lining from falling out. The thickness of this layer is kept relatively uniform by a reciprocating cutter bar 
or a rotating shaft. Each of these devices is equipped with narrow (approx. 6 mm) tungsten carbide cutting 
teeth. These cutting teeth are spaced about 10 cm apart on a reciprocating cutter bar or a corresponding 
distance apart on a rotating shaft to give the like effect. The desired surface is one of controlled roughness, 
where balls will roll. A smooth, slick surface, such as would be produced by a continuous blade, is definitely 
undesirable, since here again the balls would slide and not roll. Pertinent data relative to balling drums are 
given in Table 3. 
 
Table 3. Data on balling drums. 
 

Size: diam. x length (m) Rotation speed (rpm) Output (t/h magnetite) 
2.7 x 9.3  12.0 60 
3.0 x 9.6 11.2 80 
3.6 x 9.9 9.3 120 
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5. THERMAL DRYING  
 
5.1. Introduction 
 
In drying the moisture level is reduced by transferring heat. The water is removed by direct evaporation or by 
the transfer into a heated gas into which the material is fed, such as incineration off-gas. Thermal drying is 
more expensive than mechanical dewatering (dewatering screen, centrifuge, filters), and therefore only 
applied to reduce the moisture content below the maximum dewatering rates that can be obtained by 
mechanical means. Heat can be transferred to the material by means of: 
 

• Convection (transfer from surrounding hot gasses to the particles) 
• Contact (with a heated surface or tube) 
• Radiation (transfer by IR radiation from heat emitting surface) 

 
Within solids heat transfer by contact is the only possible way. The higher kinetic energy from neighbouring 
molecules is exchanged in this process. The determining mechanism is heat transfer by convection wherever 
there is a flowing medium.   
 

 
 

Coal drying plant [KHD Humbold-Wedag] 
 
In a stationary and one dimensional case (temperature T is constant with time and depends only on the co-
ordinates of the system), Fourier’s law gives the heat flow Q crossing a perpendicular surface A: &

dx
dTAQ λ−=&  

λ is the heat transfer coefficient (W/mK) and x the coordinate in the direction of the temperature gradient.  
 
In the 3D case, T depends on spatial co-ordinates (T=f(x,y,z)) and Fourier’s law is defined by the partial 

differential equations 
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Figure 10 - Coal rotary dryer [KHD Humbold Wedag] 
 
 
 

 
Figure 11 – indirect heat rotary dryer (kiln) [METSO] 

 
The steam tube dryer is another indirect heat dryer that can utilise (waste) steam (Fig. 12). Pressures can 
range from 1.5 to 20 bar. Feed capacities are 3 to 50 t/h. heating surface can be as large as 2250 m2. 
Applications are the drying of heat sensitive materials (see above). 
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Figure 12 – Steam tube dryer [METSO] 

 
Granular and powdery material (< 6 mm) can be dryed in a fluid bed dryer (Fig. 13). A 0.25*1.0 mm feed is 
optimal. Air flows evenly trough a particle bed, that becomes fluid at sufficient flow rate. Intense mixing and 
air/particle contact promotes a consistent product and rapid dry rates. Typically drying temperature is around 
100oC. Capacity is up to 300 t/h. Fluid bed applications in calcining, combustion, roasting etc. can have 
operating temperatures up to 1200oC. 

Figure 13 – Fluid bed dryer [METSO] 
 
Other drying principles are belt dryers, tunnel dryers, stream dryers (combination of pneumatic transport 
and drying) and drying combined with grinding and classification. 
 
5.5. References 
 

• Metso Handbook, Metso Minerals, 2002. 
• H. Schubert: Aufbereitung fester mineralischer Rohstoffe (Verlag für Grundstoffenindustrie, 

Leipzig, 1983. Volume 2, Chapter 2. 
• Coulson, Richardson: Chemical Engineering, Vol. 2. Pergamon, 1991. 
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6. DUST CONTROL 
 
Dry processing may lead to significant dust emission when no appropriate technical measures are taken. 
Problems may occur when the moisture content of a given feed material shows strong fluctuation. In these 
cases proper control, adequate maintenance and a fundamental understanding of the dedusting circuit is the 
key for effective dust control.  
 

 
 

Fig. 6.1 - Dust generation at a conveyor transfer point. 
 
In the first place dust control systems are needed for health, safety and environmental reasons:  
 

- To reduce dust related health hazard and discomfort for plant personnel  
- To prevent air pollution and dust settling at nearby sites 
- To prevent premature failure and excessive maintenance of sensitive equipment 
- To prevent explosion hazard  

 
Dedusting systems make up a considerable part of the investment costs of a dry process. Proper integrated 
engineering in an early stage prevents problems and dust hazard afterwards. In this way “emergency” fixing 
of dust problems by improvised equipment, water spraying, and extensive manual cleaning and wearing of 
dust masks can be prevented. 
 
The design of an in-plant dedusting system contains the following elements: 
 

- Hoods and enclosures for effective dust removal at all relevant sources requiring minimum air flow 
and power consumption 

- Ductwork for transporting dust-laden air with no internal settling and minimum pressure loss. 
- Dust collection system that conforms air pollution ordinances. 
- Fan and motor providing necessary air volume for the total system resistance. For cold climates 

motor power must be based on minimum operating temperatures. 
 
6.1. Dust extraction 
 
Deliberate dust extraction, in order to prevent dust problems further on, may be carried out by passing air 
upwards through a flow of material. Usually this airflow is adjusted to remove the majority of free < 1 mm 
material. Dust removal can be carried out in advance in a specifically designed chamber or chute with air-
locks. Instead of this deliberate dust removal stage as a separate unit, dedusting by suction of air from 
enclosures or hoods that encapsulate crushers, screens, conveyors and separators is more common (Fig. 6.2). 
Within the enclosures under-pressure is maintained by a central fan installed downstream after the dust 
extraction system, often a sequence of cyclone and filter bag. For multiple systems such as crushers, screen, 
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It is important to mention that moisture may reduce the efficiency of a dedusting circuit. The fine particles 
agglomerate and may form layers of cake on surfaces and inside air-tubes. However, if the material is 
sufficiently moist so that during processing dust generation remains below acceptable limits it may not be 
necessary to employ a dedusting circuit at all. In practice poor control of the moisture content of the 
processed material, resulting in strong moisture fluctuations may cause problems. In this situation the 
dedusting circuit may become inefficient after dedusting moist material, after which it is unable to 
effectively dedust dry material in a later stage due to excessive pressure losses due to blinding, cake 
formation and clogging at the air locks within the dedusting system. In such cases better moisture control of 
the feed will be more effective than considerable modification of the dedusting system. This and modern 
dedusting circuits consisting of cyclones combined with filter bags or wet scrubbers usually suffices to meet 
applicable clean-air standards. 
 
 
6.4. Conclusions  
 
Proper dedusting is indispensable for dry classification and separation processes. Well-designed systems 
keep dust hazard to an acceptable minimum. Maintaining these conditions is more a matter of proper 
engineering and management than a technical problem. Difficulties may arise when older and/or modified 
installations are operated, where there is insufficient space or dedusting capacity and especially when 
moisture levels are fluctuating. When dust generation is unacceptably high the “worst” generating spots 
should be located and dedusting hoods installed, when needed personnel should be adequately protected with 
dust masks, and dust emission kept to a minimum by regular cleaning and local spraying with finely 
dispersed water.  
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7. DEWATERING 
 
[This is an electronic reproduction of part B of Chapter 4 from Woollacott and Eric, 1994 / 2001] 
 
7.1. Introduction 
 
Solid—liquid separations perform two functions in minerals engineering. In the first place, they are 
employed to control the liquid content of a solid—liquid system. This is done by the removal of liquid from 
a system, the removed liquid being essentially free of solids. The process is referred to as dewatering and is 
applied for any of the following reasons: 
 

• to control the solids concentration of a slurry 
• to dewater a slurry so as to produce a moist solid 
• to reduce the moisture level of a damp solid. 

 
Such requirements often arise in wet mineral-beneficiation circuits, as well as in hydrometallurgical 
processing. 
 
A second area where solid—liquid separations are required is that in which the solid phase needs to he 
processed differently from the liquid phase. The most important application of this is in hydrometallurgical 
circuits, where solid—liquid separations are frequently utilized as a means of separating valuable from non-
valuable components. The metallurgist achieves this by arranging matters so that the values are present 
predominantly in one phase and not in the other. Separation of the two phases will then achieve the desired 
result. Unfortunately, it is not possible in practice to achieve a complete separation of the phases. To produce 
a liquid that is free of solids is relatively straight-forward, but the reverse—the production of solids free of 
liquid—is not. This problem will be discussed in more detail shortly. 
 
The dewatering of solid—liquid phases and their separation are achieved by the same procedures. These vary 
depending on whether the solids are coarse or fine. In addition, different techniques are employed for solid—
liquid systems of high, intermediate, and low liquid content. 
 
7.2. Types of Solid—Liquid Separation 
 
Coarse Solids 
 
Liquid can be separated easily from a coarse solid by a process of drainage. The solid—liquid mixture is 
passed over a perforated surface that allows only the liquid to pass through and leaves a dewatered solid 
behind on the surface. However, some of the liquid will remain in the interstices of the solid phase and as 
surface moisture on the particles. This type of separation is achieved using screens or centrifuges. 
 
Fine Solids 
 
When the solid phase consists of fine particles, the removal of liquid from the solids becomes more difficult 
and more expensive. In this case, the relative proportion of liquid present strongly influences the type of 
separation process that must be applied. Three different types are available. 
 

1. Thickening. This is used when the liquid-to-solids ratio is high, i.e. when the system to be dewatered 
is a dilute slurry. The object of thickening is to remove liquid from the slurry so that the latter has a 
higher solids concentration. The mechanism employed is one of sedimentation, where the solids are 
allowed to settle through the liquid phase. This results in the formation of two regions: a liquid that 
is essentially solid-free, and a slurry with a higher concentration of solids (i.e. a thickened slurry). 

 
2. Filtration. This technique is used to dewater a slurry in which the liquid- to-solids ratio is about as 

low as can be achieved by thickening operations. The object of filtration is to produce a solid phase 
with as low a moisture content as can be achieved by purely mechanical means. The principle in 
filtration is the same as that in dewatering with a screen or centrifuge, except that the apertures of the 
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surface are much smaller. The slurry is held on a porous surface (the filter cloth) and the liquid is 
drawn through the surface, leaving the solids behind as a damp solid known as a filter cake. 

 
3. Drying. This technique is used when the solid—liquid system is essentially a damp solid and it is 

necessary to reduce its moisture content. The mechanism involved is that of thermally enhanced 
evaporation, and the process is termed drying.  

 
Very often the dewatering of a dilute slurry of fine solids is achieved incrementally by the use of the above 
techniques in the sequence given. The cost of the dewatering process increases in the same sequence. 
Thickening is often used independently merely to increase the solids concentration of a slurry, no further 
dewatering being necessary. Filtration is virtually never conducted on dilute slurries, and the feed to a 
filtration operation has usually been thickened first. 
 
7.3. Constraints in Solid—Liquid Separation 
 
Complete separation difficult. While it is possible to dewater a solid material to a bone-dry condition by 
prolonged thermal drying, it is not usually economical or practically necessary to do so. Complete separation 
is certainly not possible by non-thermal means alone because the surface tension forces are sufficiently great 
to ensure that no amount of shaking or filtering will remove all the liquid from a solid. 
 
Effect of particle size. The finer the size of the particles being dewatered, the greater is the surface area of the 
solid phase and the larger is the quantity of water that is bound by surface tension. The consequence of this is 
that there is a positive correlation between the average particle size of a solid phase and the minimum water 
content that can be attained in a mechanical (non-thermal) dewatering process. The smaller the particle size, 
the higher will this minimum be. 
 
Residual liquid. In many hydrometallurgical situations, the fact that the solid cannot be completely separated 
from the liquid phase causes problems in that the liquid contains values or contaminants. In such cases, the 
entrainment of some liquid with the solid phase constitutes either a loss of values (if the liquid is value-
bearing) or a contamination of the solids (if the liquid carries some undesirable species). To overcome this 
problem, the liquid that remains entrained with the solids after a dewatering operation must be replaced by a 
second liquid that is free of either values or contaminant. In filtration, this is done simply by washing of the 
filter cake with a second liquid. In thickening operations, it can be done by a process known as 
countercurrent decantation. The washing of filter cake is discussed later in this chapter. 
 
Dewatering agents. A reduction in the magnitude of the surface tension in a solid—liquid system can 
enhance the performance of a solid—liquid separation process. Such a reduction can be achieved by the 
addition of appropriate reagents to the system. This approach is sometimes used to achieve lower moisture 
levels in screening, centrifuging, and filtering operations. 
 
7.4. Separation of Liquids from Coarse Solids 
 
It the average particle size of the solids in a solid—water system is relatively large (above about 0.5 mm), 
water can be removed mechanically from that system by the use of screens. The operation is obvious: most 
of the liquid phase simply drains through the screen, leaving behind a damp solid phase. 
 
Centrifuges can also be used for the dewatering of coarse solids. The separating mechanism is the same as on 
a screen, except that the drainage through the screen surface is enhanced centrifugally. A solid product of 
lower moisture content can therefore be obtained. 
 
A typical centrifuge designed for coarse material is shown in Figure 1. The solid—liquid mixture (usually 
solids with a high moisture level) is fed onto the inside of a rotating conical basket that is perforated. The 
rotation of the basket forces water through the perforations. The solids remain on the basket and migrate 
down its inner slope as indicated. Vigorous vibration of the basket facilitates this movement of solids. 
 
The screens generally used for the dewatering of solids larger than about 10 mm are of the same type as 
those used for the sizing of solids. A special dewatering screen has been designed for solids in the size range 

 139



0.5 to about 10 mm. Because of the large interstitial volume and surface area of material in this size range, 
the moisture level of the dewatered product can be rather high. In an effort to reduce this level, the 
dewatering screen operates at a high frequency to increase the drainage forces. In addition, the screen is so 
designed that a deep bed of solids forms on it. The thickness of the bed creates a pressure within the bed that 
reduces the interstitial volume and so assists in the removal of liquid. 

 
Figure 1. Vibrating-basket centrifuge 

 
7.5. Thickening 
 
The object of thickening is to remove liquid from a slurry in order to increase the concentration of the solids. 
This is achieved under quiescent conditions by the process of sedimentation. The principle is very simple, 
and can be illustrated by reference to the standard settling test depicted in (a) of Figure 2. A sample of the 
slurry to be thickened is placed in a measuring cylinder on which there is a vertical graduated scale. The 
slurry is mixed thoroughly and is then allowed to stand. Under the force of gravity, the solid particles start to 
settle through the liquid. A clear ‘mud line’ usually marks the interface between clear liquid (the supernatant 
liquid) and the region of settling solids. As settling progresses, this mud-line moves downwards. The 
progress of sedimentation can be studied from plots showing the height of the mud-line as a function of time. 
Such a plot, termed a settling curve, is given in (b) of Figure 2. 
 

 

Figure 2. Sedimentation test. 
 
It can be seen from this settling curve that the settling rate, as implied by the rate of descent of the mud-line, 
is relatively rapid initially and then begins to slow down. This is because, in the region where the solids are 
settling, the interaction between the particles increases as the concentration of solids increases. This 
interaction hinders settlement, and the settling rate decreases as a result. 
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At the bottom of the vessel, the interaction between particles becomes more intense as settling continues. 
Bridging between particles starts with those particles which reach the bottom of the vessel first. A bed of 
loose sludge is formed that begins to become more compacted as more solids settle into it. Settling, although 
considerably retarded, does not stop at this point: liquid is squeezed out of the bed as compaction progresses. 
This process of compaction can be aided if some sort of stirring arm is slowly rotated in the sludge bed. 
What this does is to create vertical channels in the bed through which the liquid squeezed out by compaction 
can rise. 
 
It is relatively straight-forward to exploit the sedimentation process as described here for the thickening of a 
slurry on a continuous basis. Once two well-defined regions of supernatant liquid and settling solids have 
been established, it is a simple matter to separate the one from the other and so produce a clear liquid and a 
thickened slurry. The ways in which this can be done in practice are described shortly. First, however, it is 
necessary to consider the ways in which the settling rate of solids, particularly of very fine solids, can be 
increased. 
 
Flocculation and Coagulation 
 
The factors that influence the rate at which a particle will settle through a fluid were dealt with in the chapter 
on classification. Of greatest importance to the present discussion is the influence of size: the finer the 
particle, the slower the settling rate. Very small particles tend to remain in suspension and not to settle at all. 
In that case, no clear mud-line is formed, the supernatant liquid is hazy, and thickening operations are 
generally rather difficult. 
 
It is not uncommon in practice to find a situation in which the settling rates of particles are too slow and the 
capacity of a given thickening device is insufficient. Under these circumstances, some fine solids remain 
suspended in the supernatant liquid and a solid-free liquid is not obtained. In such situations, it is necessary 
either to reduce the load on the thickener or to increase the settling rates of the solids. 
 
To achieve the latter, the particles in the slurry must be agglomerated in some way so that their effective size 
is increased. This is achieved either by coagulation or by flocculation. Coagulation occurs when two or more 
fine particles collide and remain in contact, being bound together by weak electrostatic attraction. 
Flocculation involves the attachment of particles to long-chain polymers to form large aggregates of particles 
called ‘flocs’. 
 
Both coagulation and flocculation are controlled by surface chemical effects. In essence, these are the same 
kind of effects that are important in froth flotation. As indicated in that discussion, the chemistry of the 
solution can be altered in ways that strongly affect the surface properties of the solids. 
 
One way of promoting coagulation is by the addition of ionic reagents (coagulants), such as slaked lime, 
Ca(OH)2, or alum, e.g. NaAl(SO4)2.12H2O, that have cations of high valency (e.g. Ca2+, Al3+). These affect 
the electric double-layer around particles so as to reduce the repulsive forces that keep them apart and thus 
hinder coagulation. 
 
Flocculants are widely used in thickening operations to solve thickening problems. They are water-soluble, 
long-chain compounds that have a multitude of chemically active sites along the polymer chains. If the right 
polymer is used, particles are attracted to the active sites and become attached to the polymer chain. Because 
of the length of these chains, many particles are bound together in any one floc and will settle together at a 
rate determined by the size of that floc. Even the very fine particles that would normally remain in 
suspension can be flocculated. Not only does this increase the overall settling rate of a particulate material, 
but it also improves the clarity of the supernatant liquid. 
 
As with coagulants, the solution chemistry in a liquid has a strong influence on the efficiency of a particular 
flocculant. Consequently, a large variety of flocculants is available. These vary according to both their 
chemistry and their molecular weight, larger molecular weights giving rise to longer polymer chains. Both 
natural and synthetic compounds are used. The most important are polyacrylamides and guar gum, but 
tannins (Quebracho), lignosulphonates, and carboxymethylcellulose are also used. Polyacrylamides are 
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particularly useful because conditions in their manufacture can be manipulated so that polymers of various 
molecular weights can be made. 
 
To achieve optimum results in flocculation, the optimum dosage must be used, the flocculant must be well 
mixed in the slurry, and the conditions must be quiescent. The flocs are rather fragile and tend to break down 
if conditions become excessively turbulent. 
 
Thickening Equipment 

 
Figure 3. Zones in a conventional thickener 

 
The thickening operation requires fine particles to settle through a liquid under quiescent conditions. When 
gravity is used, the settling rate is slow and the thickening equipment must be large to give an appreciable 
throughput. The devices are generically termed thickeners. Increased settling rates are possible if centrifugal 
forces are used to drive the sedimentation process. Two devices that operate in this fashion are the 
hydrocyclone and the sedimentation centrifuge. These are discussed briefly in the following section. 

 
Figure 4. Cut-away view of a conventional thickener 

 
The conventional thickener. The conventional thickener consists of a large, shallow cylindrical tank with a 
conical bottom sloping towards the centre (Figures 3 and 4). The feed slurry enters the thickener 
continuously through a central feed well. If flocculant is used, this is normally added to the feed slurry in the 
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launder before it is discharged into the feed well. In the bottom of the tank, mechanical sludge-raking arms, 
known as rakes, rotate slowly so as to draw the settled solids into the centre and assist in the compression of 
the sludge bed. The thickened slurry is drawn off continuously from the bottom of the conical section, and is 
referred to as the thickener underflow. The supernatant liquid, which is now virtually free of solids, flows 
continually over the perimeter lip of the tank into a collecting launder, and is removed as the thickener 
overflow stream. 
 
Settlement occurs within the tank in the same way as was described for the settling test. The only difference 
is that the process is continuous. As a result, different zones are maintained within the thickener that 
correspond roughly to the different stages of settlement. These zones can roughly be described as follows. 
 
There is a zone spreading out from the feed well, where the slurry has approximately the same pulp density 
as the feed, zone B in Figure 3. The top of this zone is marked by a mud-line, above which is the region of 
supernatant liquid, zone A. At the bottom of the tank, zone D. the settled solids have formed a sludge bed 
that is continually under compression assisted by the motion of the rakes. Between the sludge bed and zone 
B is a region where the concentration of solids varies from that of the feed to that of the sludge bed. This is 
zone C in the diagram. 
 
As slurry enters the thickener, the solids settle through zones B to D until they are removed in the underflow 
stream. Most of the liquid in the feed slurry enters the supernatant zone, rising from the different zones 
below, until it flows over the perimeter of the tank. 
 
By virtue of its large volume (some thickeners have diameters as large as 100 m), a conventional thickener 
can provide significant surge capacity in a circuit. Fluctuations in the feed rate of slurry or in the rate of 
withdrawal of the underflow cause the volumes of the different zones in the thickener to change. If the 
thickness of the sludge bed increases, the torque on the rake arms also increases, and this is a signal to the 
operator that the thickener load has increased. To protect the raking system from damage due to excessive 
torque, it is usually fitted with a mechanism that is able to lift the rakes out of the sludge bed to a greater or 
lesser degree. 
 
If the rotation of the rakes is stopped during operation, the performance of the thickener is severely impaired. 
The rakes can very quickly become buried in the sludge bed, and they cannot be restarted without taking the 
thickener out of operation and physically washing out the sludge; a tedious and time-consuming process. 
 
Other types of thickener. Thickeners of various design are available. These include differences in geometry 
and in the way in which the feed slurry is introduced to the thickener. 

 
Figure 5. The lamella thickener. 

 
A somewhat different concept is employed in the lamella thickener (Figure 5). It is fitted with inclined plates 
within the body of the thickener. What this does is to reduce the distance through which the solids have to 
settle. Once the solids encounter the plates, they slide down into the sludge bed, rather than having to settle 
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further through the liquid phase. The net effect of this arrangement is to considerable increase the thickening 
capacity of a tank of given volume. 
 
Equipment for Centrifugal Sedimentation 
 
Two types of devices use centrifugal forces to accelerate settling rates: the hydrocyclone and the 
sedimentation centrifuge. As discussed in the chapter on classification, a hydrocyclone operates to some 
extent as a sedimentation device. As such, it can be used for thickening purposes. Two sedimentation 
centrifuges are in common use—the solid-bowl and the screen-bowl centrifuge. 
 

 
Figure 6. Cut-away side view of a solid-bowl centrifuge 

 
As shown in Figure 6, a solid-howl centrifuge consists of a cylindrical drum that rotates at high speed, up to 
6000 r/min. The slurry is introduced to the inside of this drum and is centrifuged to form a pool as shown. 
Solids settle to the surface of the drum. A scroll, known as the conveyor, rotates at a slightly slower speed 
than the bowl and so scrapes the settled solids to one end of the drum. The drum at his end tapers inwards so 
that the scraped solids are drawn above the level of the liquid, as shown, and discharge through the end of 
the drum. The tapered section of the drum is referred to as the ‘beach’. The clear supernatant liquid 
overflows from the lip at the other end of the drum and is discharged from the machine as the centrate. 
 
The screen-bowl centrifuge is very similar to the solid-bowl centrifuge. The major difference is that the 
beach area is perforated. Liquid with some fine solids is removed through the perforations and is combined 
with the centrate. The result of this arrangement is that greater dewatering rates are achieved at the expense 
of a higher solids content in the centrate. 
 
 
7.6. Filtration 
 
The Principles of Filtration 
 
In filtration, liquid is removed from a slurry by being drawn through a porous filter medium, the filter cloth, 
which prevents the passage of the solid particles. The solids build up on the medium and form a cake. As the 
cake builds up, it acts as a filtration medium in itself, allowing passage only to the liquid phase (Figure 7). 
The liquid that passes through the cake and the cloth is termed the filtrate. 
 
The size of the pores in the filter cloth is selected according to the size and proportion of the finest particles 
in the material to be filtered and the degree of clarity required in the filtrate. Both the cake and the filter cloth 
offer very significant resistance to the passage of liquid, and hence to the rate of filtration and cake 
formation. The resistance is determined by the viscosity of the liquid, the pore size of the cloth, and the size 
of the interstices in the cake. In order to overcome this resistance and so obtain a reasonable rate of liquid 
removal, pressure must be applied to the system. 
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Figure 7. The formation of a filter cake 

 
Once a cake has been built up, a significant quantity of liquid remains associated with the solids, being 
retained in the interstices of the cake. This residual moisture can be reduced considerably if air under 
pressure is drawn through the cake. The resistance offered by the cake and filter cloth to the passage of air is 
very much less than that offered to the passage of liquid. As a result, relatively high air velocities through the 
cake are possible. This forces much of the interstitial liquid through the cake and filter cloth, thus producing 
a drier cake. The rate at which a cake can be dried is influenced by the surface tension of the liquid, as well 
as by the same factors that affect the rate of liquid removal and cake formation. 
 
When a cake has been formed and dried, it must be removed from the filtration machine. The way in which 
this is done varies for different machines, as will be discussed shortly. 
 
From the descriptions given so far, it will be evident that filtration is not a single-stage process. Three 
different operations must be performed in order to achieve as low a moisture level as possible in the filter 
cake. These are: 
 

• formation of the cake 
• drying of the cake 
• removal of the cake. 

 
It is this multi-stage aspect of the process that complicates the engineering of a robust and reliable filtration 
device for large-scale continuous operation. 
 
Factors Affecting Filtration 
 
A variety of options are available in order to maximize the capacity of a given filtration device. The more 
important are as follows. 
 
Increased filtration pressure. Pressure must be applied in order to force liquid through the cake and the filter 
cloth. This can be done in one of two ways. The method most widely used is the application of a vacuum on 
the filtrate side of the filter cloth. This results in a differential pressure of something less than one 
atmosphere across the cake and filter cloth. Significantly higher pressures can be applied if the system is 
pressurized on the slurry side of the cloth. It is considerably more difficult, and costly, to engineer a 
continuous filtration system using this approach, but in certain situations the cost is justified. 
 
Increased pore size. Larger pores in the filter cloth reduce the resistance to the flow of liquid through the 
cloth at the expense of allowing a higher proportion of the very fine solids to enter the filtrate. 
 
Manipulation of the cake formation. It is common practice to attempt to control the way the cake is formed 
so that the coarsest particles form a layer closest to the filter cloth, as shown in Figure 7. The interstices in 
this layer will be relatively large so that the rate of filtration is not reduced significantly. As filtration 
progresses, finer particles penetrate these interstices to some extent and form further layers as the cake builds 
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up. This approach produces a thicker cake than would be obtained if particles of all sizes were allowed to be 
incorporated in the first layers of the cake. 
 
Use of flocculants or filter aids. Filtration rates can be increased by the use of various reagents that facilitate 
a reduction in the resistance of the cake to the passage of the liquid phase. Flocculants can be useful in this 
regard by agglomerating fine particles with coarse ones in the way that was described earlier. This makes the 
cake more porous because of the presence of the large aggregates of particles that are formed, and because of 
a reduction in the proportion of fine particles that are free to fill up the interstices. Filter aids have a different 
action. They reduce the viscosity or surface tension of the liquid phase. This results in a greater flow rate of 
liquid through the cake under a given filtration pressure. The speed of cake formation and of drying is 
thereby increased. 
 
Washing of the filter cloth. Just as fine particles may fill up the interstices of the cake, so they are able to 
block the pores in the filter medium and ‘blind’ the cloth. Obviously, if this happens extensively and persists, 
the filtration performance deteriorates. In applications where this is a problem, the filter cloth is washed at 
some stage in the filtration cycle. Water sprays are directed appropriately so that any particles in the pores of 
the cloth are dislodged and washed out. 
 
7.7. Vacuum Filtration 

 
Figure 8. Cut-away view of a drum filter. 

 
The most widely used type of filtration in minerals engineering is vacuum filtration. The principle in this 
type of filter is to create an effective differential pressure across the filter cloth and cake by the application of 
a vacuum on the filtrate side of the cloth. 
 
Three different types of equipment are commonly used: drum, disk, and horizontal-belt filters. As mentioned 
before, there are three stages in filtration that must he engineered in each filtration device. The filtration 
surface must be moved into a region where a vacuum is applied so that a cake can be formed. From there, the 
cake must be moved to a region where air can be drawn through it to dry it. This is the region in which the 
cake is washed if washing is required. Following this, the filtration surface must carry the dried cake to a 
region where the cake can be discharged. The way in which these three stages are engineered distinguishes 
the three major types of vacuum filters. 
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Drum Filters 
 
The drum filter consists of a large cylindrical shell. As indicated in Figure 8, the outside of the drum is 
covered with shallow compartments about 25 mm deep, each of which is covered with a drainage grid. These 
compartments are arranged in rows as indicated. Around the outside of these compartments, the filter cloth is 
wrapped and held tightly in position by a wire that is wound round the drum across its width. On the inside 
of the drum, pipes are connected to each of the compartments. Through these, either a vacuum or 
compressed air can be applied, depending on the stage reached by the compartment in the filtration cycle. 
 
The drum is partially immersed in the slurry that is to be filtered and rotates slowly about its axis. The slurry 
is held in an agitated tank, as indicated in Figure 8. If the agitation of the slurry is not too vigorous, the slurry 
at the bottom of the filter tank will have a higher proportion of coarser particles than the slurry at the top of 
the tank. 
 
As the drum is rotated, each row of compartments is moved progressively through the three stages of 
filtration. When the row of compartments is immersed in the slurry, vacuum is applied to each compartment 
in the row, and liquid is drawn through the filter cloth, via the pipes attached to each compartment, and into 
the filtrate-receiving system. In the process, the cake forms on the outside of the filter cloth. This part of the 
cycle is usually started when the compartments are in the lowest part of the tank so that the cake is formed 
initially with the coarser particles. 
 
When the cake emerges from the slurry, the vacuum is maintained, but now air is drawn through the cake 
and the drying stage starts. As can be seen from Figure 8, this drying period is fairly extensive, occupying 
about two-thirds of the rotational cycle of the drum. If the cake is to be washed, this is done during the 
drying cycle and is accomplished by rows of sprays installed above the drum at one or more locations. 
Just before the row of compartments is again submerged in the slurry to begin a further filtration cycle, the 
vacuum to the compartments is turned off and compressed air is applied to blow the cake off the cloth. The 
cake falls into a chute and is transported away. 
 
Disk Filters 

Figure 9. The disk filter. 
 
The disk filter is similar in concept to the drum filter but, in order to increase the surface area for filtration, 
disks are used instead of a drum. The result is a much increased capacity for a given size of unit. 
A disk filter consists of a number of disks that are mounted co-axially, as shown in Figure 9. Each disk 
consists of a number of segments, which are equivalent to the compartments on a drum filter. The major 
differences from the situation in a drum filter are, firstly, that each compartment is double-sided so that cake 
is formed on both sides and, secondly, each compartment is shaped as a segment of a circle. It is very evident 
from the diagram that this arrangement leads to a filtration-surface area that is considerably greater than is 
possible with a drum filter of similar diameter and width. 
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The filtration process follows the same sequence as described for a drum filter, but slight modifications have 
to be made to accommodate the difference in geometry. The most significant is that the discharge system 
must be placed so as to receive cake from both sides of each disk. In addition, it is difficult to install an 
effective cake-washing system, and it is not as easy to control the way in which the cake is formed. Because 
of the geometry of the filter, each segment on a disk is exposed to a complete cross-section of the slurry pool 
during the cake- formation cycle. This is different from the situation with a drum filter, where it is possible to 
expose each compartment to coarser particles first and so build up a thicker cake. For this reason, both the 
cake formation and the cake discharge are inferior to those in a drum filter. However, despite its 
disadvantages, the disk filter has a very important role as the cheapest filtration option for slurries that are 
easy to filter. 
 
Horizontal-belt Filters 

 
Figure 10. The horizontal-belt filter. 

 
In this device, the filter cloth is formed into a continuous belt that is passed over an arrangement of pulleys, 
as shown in Figure 10. The belt is supported on a drainage belt made of perforated rubber and moves with it. 
Below this drainage belt, a series of suction boxes is installed along the length of the filter. The slurry to be 
filtered flows into a feed box at one end of the belt. Cake formation begins immediately. As the belt moves 
towards the discharge end, it draws the formed cake with it. In this way, the cake is carried over the other 
suction boxes, where the cake is dried. Cake washing can be applied at these points if necessary. 
To discharge the cake, the belt is passed over a small-diameter roll. The curvature imparted to the cloth is 
sufficiently great for the cake to peel off and be discharged into the chute. Several sprays are arranged as 
shown to wash the belt and remove any fine particles that may be trapped in the pores of the filter cloth. In 
addition, any undischarged cake is removed. 
 
A horizontal-belt filter is generally used where other types of filters are unable to achieve the required 
filtration duty. Better performance is possible for the following reasons: 
 

1. The system of cake discharge is superior to a blow-off system, especially when the cake is sticky. 
2. The cyclic removal of fines from the pores of the filter cloth improves the filtration rates. 
3. The slurry does not have to be agitated. Indeed, in the other types of filters agitation is needed to 

prevent settling out of the solids in the filter tank. With the belt filter, settlement is encouraged 
because it aids filtration. 

4. Because particle settlement is encouraged, the coarser particles tend to reach the cloth before the 
finer particles. The first layers of the cake are therefore coarser, which, as mentioned before, 
promotes the formation of thicker cakes. 

5. On a belt filter, the control of cake formation, drying, and (if needed) cake washing is superior to 
that in any other vacuum filter. The reason for this is that the length, and even the intensity, of any 
particular part of the filtration cycle can be manipulated very easily. In addition, it is possible to 
classify the feed slurry and to deposit the coarser fraction at the feed end and the finer fraction in a 
second feed box placed further along the belt. 

 
However, the belt filter has several disadvantages. In the first place, it is a more complex, and therefore more 
expensive, device than other filters of similar capacities. Secondly, it has rather high operating costs owing 
mainly to the high rates of wear on the drainage belt. This results from the fact that the drainage belt has to 
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be dragged (under suction) over the stationary suction boxes. Not only does wear of the belt affect the 
operating costs, it also results in a gradual deterioration in filtration performance. 
 
Filtrate-receiving System 

 
Figure 11. Filtrate-receiving system. 

 
The filtrate that is drawn from a vacuum filter during the cake-formation, drying and washing stages is 
handled in a filtrate-receiving system. A typical design is shown in Figure 11. The engineering problem here 
is that, in order to apply a vacuum, air must be pumped continually from the system. Mixed with the air, 
however, is a large volume of filtrate that is continually being drawn from the filter. The vacuum pumps are 
precision pumps and can be damaged if both the filtrate (which is never entirely free of solids) and the air 
pass through the pump continually. Accordingly, the filtrate and air are separated in a specially designed 
receiver. The liquid is pumped from the bottom of this, while the air, containing some entrained liquid, flows 
through the top. The remaining entrained liquid is removed in a moisture trap, from which it drains by 
gravity through a barometric leg. 
 
7.8. Pressure Filtration 
 
A mentioned before, the performance of a filtration device can be improved by an increase in the differential 
pressure across the cake and filter cloth. Vacuum filters are restricted to differential pressures that are always 
less than one atmosphere. In that case, the differential pressure is created by the application of suction on the 
filtrate side of the cloth. In pressure filters, a positive pressure is applied on the slurry side of the cloth. The 
important implication of this difference is that much higher differential pressures can be used with pressure 
fibres, pressures of about 4 bars being common. Consequently, drier cakes and, in principle at least, higher 
filtration rates are possible. 
 
The major difficulty with pressure filters lies in the engineering of a viable high-capacity continuous 
machine. From an engineering point of view, the advantage of vacuum filtration is that the slurry-handling 
system and the control of the filtration cycle can be performed under atmospheric conditions. With pressure 
filtration, this must all be done in a pressurized environment. As an illustration of the difficulties that this 
imposes, a batch device that is used in the industry is described. This is the plate-and-frame press (Figure 
12). 
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It consists of a series of plates and frames that are stacked alternately as shown. The plates correspond to the 
compartments in a drum filter and are covered with a filter cloth. The interior of the plate is grooved, or is 
designed in some way so that the filtrate that is forced through the filter cloth can drain away. The frames 
create a hollow cavity between one plate and the next into which the slurry can be pumped under pressure. 
The series of plates and frames are screwed together so that the system is water-tight. When slurry is pumped 
into the frames, the pressure of the slurry forces the liquid through the cloth and into the plates, from where it 
drains into the filtrate-receiving system. The concentration of solids in the frames increases steadily, and the 
flow rate of slurry decreases accordingly. When the flow of slurry has stopped (i.e. the frames are full of 
cake), the cake can be washed by pumping fresh liquid or water through the press. The cake is then dried by 
the application of compressed air. When this part of the filtration cycle has been completed, the plates and 
frames are separated and the filter cake is discharged. 

 
Figure 12. Plate-and-frame filter press. 

 
All pressure filters operate on a basis similar to that described for the plate-and-frame press. It can be 
appreciated that the need to progress through a sequence of at least three different stages of filtration under 
pressure makes the engineering of continuous filtration very difficult. To date, the best that has been done is 
to devise a multiple-hatch arrangement so that feed can be pumped continuously, but not always into the 
same frames. Even so, there are mechanical difficulties in the designing of a robust and reliable system for 
taking each frame-and-plate compartment through the different stages of the operation. 
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