

Physicall Processing Separation

Dr ir Rénard Chaigneau November 2012

Mineral Processing Part B: Separation

- Two-phase systems
- Sedimentation
- Fluidization
- Filtration
- Drying
- Cyclones
- Magnetic separation

Is a bubble different from a solid particle?

interface

Shape: bubbles deform if larger than 2 mm.
"Stick condition" at the interface?
Bubble in a pure liquid: no.
Bubble in a process: yes!
Surface-active materials collect at the interface and create a "solid"

Delft University of Technology Applied Earth Sciences

Single particle in a fluid

Drag coefficient

6

Settling velocity of a single sphere

Force balance:

$$F_G^{\prime} - F_W = 0$$

$$\frac{\pi}{6}d^{3}(\gamma - \rho)g - \frac{\pi}{4}d^{2}C_{w}(\text{Re})\rho\frac{v_{s}^{2}}{2} = 0$$

$$v_{s} = \sqrt{\frac{4}{3}g \frac{d(\gamma - \rho)}{C_{w(\text{Re})}\rho}}$$

Laminar:

$$v_s = \frac{(\gamma - \rho)d^2g}{18\eta}$$

Transition:

$$C_W = \frac{18.5}{\mathrm{Re}^{0.6}}$$

Turbulent:

$$v_s = \sqrt{\frac{3gd(\gamma - \rho)}{\rho}}$$

General calculation procedure (single particle):

- 1. Estimate C_W with graph Re- C_W
- 2. Calculate v_s with estimated C_W
- 3. Calculate Re with this v_s
- 4. Determine new C_W with graph
- 5. Calculate new v_s with this C_W
- 6. Repeat 3 t/m 5 until you have sufficient accuracy

Calculation of Settling velocity

Alternative Procedure:

1. Compute Re²C_w(Re)
$$\frac{v_s^2}{2}$$

 $(\gamma - \rho)Vg = A_{\perp}C_w(\text{Re})\rho \frac{v_s^2}{2}$
 $\frac{2(\gamma - \rho)\rho Vgd_p^2}{A_{\perp}\eta^2} = \text{Re}^2 C_w(\text{Re})\rho^2$

- 4. Determine Re with graph
- 5. Calculate v_s with this

Re

Settling velocity: examples

Spherical particles of coal, sand and copper in water

An approximately spherical particle of diameter 0.1 mm and density 2600 kg/m³ falls in oil with a density of 900 kg/m³ and viscosity of 0.003 Ns/m². Calculate the slip velocity (terminal velocity) of the particle.

$$\frac{2(\gamma - \rho)\rho Vgd_p^2}{A_\perp \eta^2} = \operatorname{Re}^2 C_w(\operatorname{Re})$$

Delft University of Technology Applied Earth Sciences

Kinetic gravity separator

Input - stones, sinter, glass, heavy non ferrous metals, light non ferrous metals, organic fraction

Output - organic fraction

- aluminium and stone fraction
- heavy non ferrous metals (Cu, Zn, Pb)

Delft University of Technology Applied Earth Sciences

100%

80%

60%

40%

20%

0%

0,0

0,2

0,4

Weight

Kinetic gravity separator

0,2 0,6 0,8 1,0 1,2 0,4 Velocity (m/s)

Non-ferrous metals 2-10 mm

Rising Current Separation

Delft University of Technology Applied Earth Sciences

Battery processing Braubach, Germany

11

 v_i

Definition of velocities

- v_p : Particle velocity with respect to the wall of the system.
 - : Superficial fluid velocity w.r.t. the wall of the system, i.e., the fluid velocity without particles present.
 - : Interstitial fluid velocity w.r.t. the wall of the system, i.e. the average velocity of the fluid between the particles.
- $u_v(\varepsilon)$: Velocity of a swarm of particles with porosity ε in absence of a superficial fluid velocity -> sedimentation velocity. $v_s = v_p - v_i$: Slip velocity, i.e., the relative velocity between particle
 - and fluid. \leftarrow This is the starting point of calculations.

Note: v_s is often used to indicate the superficial velocity.

Relation between slip velocity and others

Down velocities are defined as positive!

17

Delft University of Technology Applied Earth Sciences

Many particles: Richardson & Zaki

$v_s(\varepsilon) = v_{s(\varepsilon=1)} \cdot \varepsilon^{n-1}$	
$\mathcal{U}_{v}(\mathcal{E}) = \mathcal{V}_{s(\mathcal{E}=1)} \cdot \mathcal{E}^{n}$	
reduced settling velocity!!	
${\rm Re}_p < 0.2$	n = 4.65
$2 < Re_{p} < 1$	$n = 4.35 \text{ Re}_{p}^{-0.03}$
$1 < \text{Re}_{p} < 500$	$n = 4.45 \text{ Re}_{p}^{-0.1}$
${\rm Re}_{\rm p} > 500$	n = 2.39

Delft University of Technology Settling velocity at high solids concentrations

Explanation of *n* in: $\mathcal{U}_{v}(\mathcal{E}) = \mathcal{V}_{s(\mathcal{E}=1)} \cdot \mathcal{E}^{n}$

- 1. If solids go down, medium must go up: ε^1
- 2. Solids contribute to density of medium: $\varepsilon^{(0.5-1)}$
- 3. Increased shear: $\varepsilon^{(n-2)}$

High solids concentrations: Hindered settling

If solids go down, medium must go up: ε^1 :

Slip velocity v_s and particle velocity $u_v = v_p$ are the same

Settling velocity $u_v = \varepsilon v_s(\varepsilon)$: smaller than slip velocity

High solids concentrations: Hindered settling

Solids contribute to density of medium: $\varepsilon^{(0.5-1)}$

Density of medium is ρ , so differential density is $(\gamma-\rho)$

Density of medium is $\epsilon \rho + (1-\epsilon)\gamma$, so differential density is $\epsilon(\gamma-\rho)$

High solids concentrations: Hindered settling

Increased shear: $\varepsilon^{(n-2)}$

Much room for shear

Room for shear bounded by neighboring particles

Delft University of Technology Applied Earth Sciences

Separation in Hydrocyclone

25

Jigging

Jigging is based on a segregation of particles due to periodical fluidisation (e.g. in an oscillating water flow)

26

Delft University of Technology Applied Earth Sciences

Jigging

Segregation by periodical fluidisation (e.g. in an oscillating water flow)

Jigging of thick PE-PP flakes

Delft University of Technology Applied Earth Sciences

Concentration criterion

Taggart, 1956

If > 2.5: always separation possible, down to finest sands 1.5: sand sizes only 1.25: gravel sizes only <1.25 very difficult if possible at all

TU Delft

Fluidized beds and fixed beds

Fixed beds: Ergun formula

$$\frac{\Delta P}{L} = \frac{1 - \varepsilon}{\varepsilon^3 d_{vs}} \left(\frac{150(1 - \varepsilon)\mu u}{d_{vs}} + 1.75\rho u^2 \right)$$

u =superficial velocity

$$\mu$$
 = fluid viscosity

- d_{vs} = the volume/surface diameter of a particle
- L = height of the bed

$$\frac{\Delta P}{L} = \frac{150(1-\varepsilon)^2 \,\mu u}{\varepsilon^3 d_{vs}^2}$$

Laminar case

(Carman-Kozeny equation)

Fluidization point of a fixed bed

 $\frac{\Delta P}{L} = (1 - \varepsilon)(\gamma - \rho)g$

Delft University of Technology Applied Earth Sciences

Fluidized beds

Two different approaches:

- 1. Combination of Ergun/Carman Kozeny and $\frac{\Delta P}{I} = (1 \varepsilon)(\gamma \rho)g$
- 2. Directly use:

$$u = u_{v}(\varepsilon) = v_{s(\varepsilon=1)} \cdot \varepsilon^{n}$$

Example:

Oil with a density of 900 kg/m³ and viscosity of 0.003 Ns/m² passes vertically upward through a bed of catalyst consisting of approx. spherical particles of diameter 0.1 mm and density 2600 kg/m³. At what mass flow rate per unit area of bed will fluidization occur according to Carman-Kozeny $\frac{\Delta P}{L} = \frac{150(1-\varepsilon)^2 \mu u}{\varepsilon^3 d_{vs}^2}$ versus

Delft University of Technology Applied Earth Sciences

Viscosity of fluidized beds

34

Elutration in fluidized beds

$$X_s = X_{s0}e^{-k_e}$$

Amount of fines left in the bed with lower terminal velocity than fluidization velocity

Delft University of Technology Applied Earth Sciences

Elutration in fluidized beds

36
Delft University of Technology Applied Earth Sciences

Principle of dry fluidized bed separation

Separation density of medium is $\rho_b \approx \epsilon \rho + (1-\epsilon)\gamma$.

Laboratory Dry Fluidised Bed Separator

Fluidised Bed Separator Sink and Float

Sedimentation: concentrated streams

Testing of suspensions

Sedimentation: concentrated streams Delft University of Technology

TU Delft

Applied Earth Sciences

Coe and Clevenger

Estimated area needed for sedimentation tank:

$$A = \max_{D_i > D > D_u} \frac{(D - D_u)}{\rho v(D)} QC \rho_s$$

 D_i = initial dilution, mass of water per mass of solids D_u = final dilution

v = settling rate at dilution D

Q = volumetric capacity of the tank

C = volume fraction solid in the feed

Delft University of Technology Applied Earth Sciences

Coe and Clevenger

Solids flow in kg/s: $QC\rho_s$ Water going up in kg/s: $(D - D_u)QC\rho_s$ Minimal settling rate in m/s: $v(D) > \frac{(D - D_u)}{\rho A}QC\rho_s$

Delft University of Technology Applied Earth Sciences

Kynch construction: single column test

Sedimentation: example

A slurry needs to be thickened from 5 kg of water per kg of solids to 1.5 kg of water per kg of solids at a capacity of 1.33 kg/s of solids. What is the required area A?

Dilution D (kg water/kg solid)	5.0	4.2	3.7	3.1	2.5
Meas. rate of sedimentation (mm/sec)	0.20	0.12	0.094	0.070	0.050

D	D - D _u water to overflow	v sedimentation rate, m/sec	$(D - D_u)/v$ (sec/m)
5.0	3.5	2.00*10-4	$1.75^{*}10^{4}$
4.2	2.7	1.20*10-4	2.25*104
3.7	2.2	0.94*10-4	2.34*104
3.1	1.6	0.70*10-4	2.29*10 ⁴
2.5	1.0	0.50*10-4	2.00*104

Delft University of Technology Applied Earth Sciences

Delft University of Technology Applied Earth Sciences

 ε and d_{vs} unknown $\rightarrow \Delta P_c = \alpha \mu v_s \frac{M_c}{A_c}$

Add pressure drop of cloth: $\Delta P_f = \Delta P_m + \Delta P_c = \mu v_s \left| \frac{\alpha M_c}{A_c} + R_m \right|_{47}$

Filtration

Rewrite the equation in terms of the volume of filtrate V_f that has passed through an area A_c of the cake:

 $M_c = C_c V_f$ $C_c = \text{kg solids/m}^3 \text{ filtrate}$

$$\frac{dV_f}{dt} = A_c V_s$$

$$\rightarrow \quad \Delta P_f = \mu v_s \left[\frac{\alpha M_c}{A_c} + R_m \right] = \mu \frac{dV_f}{dt} \left[\frac{\alpha C_c}{A_c^2} V_f + R_m \right]$$

Delft University of Technology Applied Earth Sciences

Two modes of Filtration

$$\Delta P_f = \mu \frac{dV_f}{dt} \left[\frac{\alpha C_c}{A_c^2} V_f + R_m \right]$$

Constant pressure filtration

$$\Delta P_f t = \mu \left[\frac{\alpha C_c}{2A_c^2} V_f^2 + R_m V_f \right]$$

If filter cloth is neglected:

$$V_f = A_c \sqrt{\frac{2\Delta P_f t}{\alpha \mu C_c}}$$

Constant rate filtration (batch)

$$\Delta P_f = \mu Q_f \left[\frac{\alpha C_c}{A_c^2} Q_f t + R_m \right]$$

Pressure increases linearly with time ($Q_f = V_f/t$ is a constant).

Constant pressure Filtration

Delft University of Technology Applied Earth Sciences

Filtration: example

A continuous rotary filter is required for the filtration of a suspension to produce 2 litres/s of filtrate. A sample was tested on a small laboratory filter of area 0.023 m² to which it was fed by means of a slurry pump to give filtrate at a constant rate of 12.5 cm³/s. The pressure difference across the test filter increased from 14 kN/m² after 300 s filtration to 28 kN/m² after 900 s at which time the cake thickness had reached 38 mm. Calculate the area of a rotary drum filter, assuming that the resistance of the cloth can be neglected, and that the vacuum system is capable of maintaining a constant pressure difference of 70 kN/m². The drum will rotate at a speed of 1 rev/min and 20% of the cloth will be submerged.

Delft University of Technology Applied Earth Sciences

W

Definition of moisture content:

• on a wet basis:

$$W_w = \frac{W_d}{1 + W_d}$$

• on a dry basis:

$$W_d = \frac{W_w}{1 - W_w}$$

Drying is:

- Heat of evaporation into contact with water
- Evaporated water **out**
- Heat **in**:

Water out:

- convection
- conduction
- radiation/Ohmic

- capillary flow
- diffusion
- vapor flow

Supplying the heat

- **Convection:** Turbulent hot air = fast and cheap
- **Conduction:** Heat through "laminar boundary layer" = slow and cheap
- **Radiation/Ohmic:** microwave, radio-frequency, electric currents = instantaneous and expensive process
- **Efficiency of heat delivered/power used:**
- Microwave 50% (very flexible, $cost \approx 0.5$ euro/Watt installed)
- Radiofrequency 70% (less flexible: contacting problem)
- Ohmic 100% (not flexible: difficult contacting)

TU Delft

Hot air drying: the "laminar" layer

Balance: $dW / dt = \alpha A \Delta T / \Delta H = k A \Delta P$

Delft University of Technology Applied Earth Sciences

Drying with hot air

Constant rate: surface is wet, laminar layer is the bottleneck for heat and mass transfer. Falling rate: surface is (partially) dry, capillary flow is the bottleneck for mass transfer.

Drying: fluidized bed

Moisture content single particle:

$$\frac{W}{W_i} = 1 - \frac{t}{\tau}$$

Residence time needed:

$$T = \frac{\rho_s d\Delta H W_i}{\alpha (T_s - T)}$$

Actual distribution of residence time:

$$E(t) = \frac{1}{\tau_r} e^{-t/\tau_r}$$

Average final moisture content:

$$\overline{W} = \int_{t=0}^{t=\tau} WE(t)dt \qquad \frac{W}{W_i} = 1 - \frac{1 - e^{-\tau/\tau_r}}{\tau/\tau_r}$$

Drying: measurement and heat and mass balance

Heat of water (liq and vap)

Drying: measurement and heat and mass balance

Heat and Mass Balance:

Material	Mass in kg/s	Mass out kg/s	Heat in MJ/s	Heat out MJ/s
Solids	M _{solid}	M _{solid}	$M_{solid}C_{p,sol}T_{solid,in}$	M _{solid} C _{p,sol} T _{solid,out}
Air	M _{air}	M _{air}	M _{air} C _{p,air} T _{air,in}	M _{air} C _{p,air} T _{air,out}
Liquid Water	M _{liq}	M' _{liq}	$M_{liq}C_{p,liq}(T_{liq,in}-T_{ref})$	M' _{liq} C _{p,liq} (T _{liq,out} - T _{ref})
Water Vapor	M _{vap}	M' _{vap} =M _{liq} - M' _{liq} +M _{vap}	M _{vap} C _{p,vap} (T _{vap,in} - T _{ref}) + M _{vap} H _{ref}	$ \begin{array}{c} M'_{vap}C_{p,vap}(T_{vap,out} - T_{ref}) + M_{vap}H_{ref} \end{array} \\ \end{array} $

Granular material with 40% moisture (wet basis) is fed to a countercurrent rotary dryer at a temperature of 295 K and is withdrawn at 305 K containing 5% moisture. The hot air contains 0.006 kg water vapor per kg of dry air, enters at 385 K and leaves at 310 K. The dryer handles 0.125 kg/s wet stock. Assuming that radiation losses amount to 20 kJ/kg dry air used, determine the weight of dry air supplied to the dryer per second and the humidity of the air leaving it.

Latent heat of water vapor H at 295 K = 2449 kJ/kg Specific heat of dried material = 0.88 kJ/kg KSpecific heat of dry air = 1.00 kJ/kg KSpecific heat of water vapor = 2.01 kJ/kg KSpecific heat of liquid water = 4.18 kJ/kg K

Delft University of Technology Applied Earth Sciences

Delft University of Technology Applied Earth Sciences

Delft University of Technology Applied Earth Sciences

Cyclones: dimensions

 d_c

1

L

 d_i

 d_0

 $\frac{l}{d_c} = 0.4$ $\frac{L}{--}=5$ d_{c} $d_i = 0.28$ d_{c} $\frac{d_0}{d_c} = 0.34$

- = cyclone diameter
- = length of vortex finder
- = length of the cyclone
- = inlet diameter
- = overflow outlet diameter

Cyclones: cutpoint

Centrifugal force on particle:

$$\frac{\pi d^3}{6}(\rho_s-\rho)\frac{u_t^2}{r}$$

Equilibrium with drag of inflowing fluid:

$$\frac{\pi d^3(\rho_s - \rho)}{6} \frac{u_t^2}{r} = 3\pi\mu du_r$$

Virtually all fluid is drawn into the vortex:

 $d^2 = \frac{9}{\pi} \frac{\mu Q}{(\rho_s - \rho) u_t^2 L}$

Delft University of Technology Applied Earth Sciences Cyclones: cutpoint

$$d^2 = \frac{9}{\pi} \frac{\mu Q}{(\rho_s - \rho) u_t^2 L}$$

Velocity profile of cyclone:

$$u_t = u_{t0} \sqrt{\frac{d_c}{2r}}$$

Tangential velocity at inlet:

$$Q = A_i u_{t0}$$

Vortex starts at $r = 0.2d_0$:

$$d^{2} = \frac{3.6}{\pi} \frac{\mu A_{i}^{2} d_{0}}{(\rho_{s} - \rho) d_{c} LQ}$$

Delft University of Technology Applied Earth Sciences

Cyclones: pressure drop

$$\alpha = \frac{Q}{A_f \sqrt{\frac{2\Delta p}{\rho}}}$$

Q = cyclone capacity (m³/s) $A_{f} = area of the feed opening (m²)$ $\rho = density of the fluid (kg/m³)$

 Δp = pressure drop across the cyclone (N/m²)

TU Delft

Cyclones: classification curve

TU Delft

Cyclones: classification curve

Delft University of Technology Applied Earth Sciences

Cyclones: cutpoint

$$d_{50} = 13.7 \frac{(d_0 d_i)^{0.68}}{Q^{0.53} (\rho_s - \rho)^{0.5}}$$

$$d_{50} = 14.8 \frac{d_c^{0.46} d_i^{0.6} d_0^{1.21} e^{0.063V}}{d_u^{0.71} h^{0.38} Q^{0.45} (\rho_s - \rho)^{0.5}}$$

Dahlstrom:

 d_i

Q

 ρ

- d_{50} = cut point (micron) d_0 = overflow diameter (cm)
 - = inlet diameter (cm)
 - = flow rate (m3/h)
- $\rho_{\rm s}$ = specific gravity of solids
 - = specific gravity of fluid

Plitt:

 d_c

d_u

V

h

- = cyclone diameter (cm)
 - = apex diameter (cm)
 - = vol. perc. solids
 - = height of vortex (cm)
Delft University of Technology Applied Earth Sciences Cyclones: cutpoint

$$d_{50} = 14.8 \frac{d_c^{0.46} d_i^{0.6} d_0^{1.21} e^{0.063V}}{d_u^{0.71} h^{0.38} Q^{0.45} (\rho_s - \rho)^{0.5}}$$

V = vol. perc. solids

Replace V in Plitt's formula by the correct expression in ε . Do you expect this behavior with V on the basis of Richardson and Zaki (Note that $\varepsilon^{4.65} \approx e^{-4.65(1-\varepsilon)}$):

$$u_{r} = \frac{(\gamma - \rho)d_{50}^{2}}{18\eta} \frac{u_{t}^{2}}{r} = \frac{(\gamma - \rho)d_{50}^{'2}}{18\eta} \frac{u_{t}^{2}}{r} \varepsilon^{4.65}$$

Delft University of Technology Applied Earth Sciences

Magnetic separation

Delft University of Technology Applied Earth Sciences

Holding Method

Pickelp Method

Delft University of Technology Applied Earth Sciences

Magnetic separation

Magnets (B in Tesla):

- Permanent magnets
 0.3-0.6 Tesla
- Electromagnets1.5 Tesla

- Magnetic materials (*M* in A/m):
- Ferromagnetic 100,000-2,000,000 A/m
- Paramagnetic 1000-10,000 A/m
- Superconducting magnets5 Tesla
- "Non-magnetic" <100 A/m

A magnet's **reach** is roughly the width W of its poles and the **force** on a volume V of magnetic material with magnetization M is roughly:

$$F = MV\frac{B}{W}$$

Magnetism

Principle:

- 1. Magnet creates field
- 2. Field magnetizes particle
- 3. Particle is attracted towards increasing field strength

Magnetic materials

Magnetic materials

Magnetic materials:

• Ferromagnetic: Steel, Magnetite, Hematite, Ilmenite

Main parameter is saturation magnetization M = 100,000-2,000,000 A/m

• Paramagnetic: Goethite, Chromite M = 1000-10,000 A/m

Main parameter is magnetic susceptibility $\chi = 0.001 - 0.01$

• "Non-magnetic" <100 A/m

 $M = \chi H$ χ (volume) magnetic susceptibility $\chi_{s} = \frac{\chi}{\rho}$ specific magnetic susceptibility [m³/kg]

Magnetic separation: Conclusion

Assume: H varies in coordinate z: gradient dH/dz

Delft University of Technology Applied Earth Sciences

Demagnetizing factor N

Particle shapes:

- Granular N=1/3
- L/D=4 Cylinder

N=0.1

- D/d=4 Disk N=0.13
- Scrap: N=0.05-0.2

Magnetic separation

Delft University of Technology Applied Earth Sciences

Magnetic separation: Dipole magnet

Dipole magnet: recovery of steel from a large distance (z = 0.5 m)

VANOVELUDIEPIEN							
Art.no.	staaf ø 5x25	staaf 0 5x75	moer M16	Art.nr.	A	В	
28.190 t/m 28.192	165	225	130	BM 28.330	835	810	
28.200 t/m 28.210	255	370	180	BM 28.332	1040	810	
28.230 t/m 28.240	260	380	195	BM 28.334	1250	810	
28.310 t/m 28.318	295	430	225	BM 28.336	1450	810	
28.320 t/m 28.328	315	460	240	BM 28.338	1650	810	
28.330 t/m 28.340	335	480	250	BM 28.340	1850	810	
28.353 t/m 28.367	360	500	275	BM 28.353	835	900	
				BM 28.355	1040	900	

8M 28.357

BM 28.359

BM 28.361

BM 28.363

BM 28.365

BM 28.367

Multi-pole magnet: recovery of (partly: e.g. 20%) steel objects from a short distance (z = 0.1-0.3 m)

$$F = \frac{\mu_0 H V_{steel}}{N} \frac{dH}{dz}$$

= $mg = \rho_{steel} V_{steel} g / 0.2$
 $\Rightarrow H \frac{dH}{dz} = \frac{\rho_{steel} g N}{0.2 \mu_0} = \frac{8000 \Pi 0 \Pi 0.2}{0.2 \Pi .2 \Pi 0^{-6}}$
= $6 \ 10^{10} \ \text{A}^2 / \text{m}^3$

Multi-pole magnet: recovery of (partly: 20%) steel objects from a short distance (z = 0.1-0.3 m)

Magnetic separation: Drum magnet

Drum magnet: recovery of objects containing steel in contact with a multipole magnet (z = 0.02-0.03 m)

saturated ferromagnetic particle

M_{sat}=2,000,000 A/m; w=0.06 m

$$\frac{dH}{dz} = \frac{2M_m}{w} e^{-\pi Z/W} \quad [A/m^2]$$

What is min. % steel for recovery??

TU Delft

Magnetic separation: paramagnetic materials

$$\vec{F} = \mu_0 M V \frac{dH}{dz}$$
; $M = \chi H$
= $\mu_0 \chi H V \frac{dH}{dz}$ paramagnetic particle

Example :

$$\chi \approx 0.001$$
; $\rho = 5000 \text{ kg/m}^3$
 $mg = \rho g V = \mu_0 \chi H V \frac{dH}{dz}$
 $\Rightarrow H \frac{dH}{dz} = \frac{\rho g}{\mu_0 \chi} = 4 \ 10^{13} \text{ A}^2 / \text{m}^3$

dz is mm-size and so is the particle!!!

H≈1,000,0000 A/m

Delft University of Technology Applied Earth Sciences

Measurement of χ_s

Frantz Isodynamic separator: balance of gravity and known magnetic force

$$F_{magn} = c \cdot \chi V I^2$$

$$F_{grav} = \rho V g \sin \alpha$$

$$\chi_{\rm s} = \frac{\chi}{\rho} = \mathbf{f} \cdot \frac{\sin(\alpha)}{\mathbf{I}^2}$$

Delft University of Technology Applied Earth Sciences

Eddy current separation

Eddy Current Separation (ECS)

CONDUCTIVITY / DENSITY RATIO

MATERIALS	(o [.] /p) X 10 ³ m ² /ohm kg
ALUMINIUM	13.1
COPPER	6.6
ZINC	2.4
BRASS	1.7
LEAD	0.4
GLASS/ PLASTIC	0

