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Mineral Processing Part B: Separation  

• Two-phase systems 

• Sedimentation 

• Fluidization 

• Filtration 

• Drying 

• Cyclones 

• Magnetic separation 

Subjects: 
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Is a bubble different from a solid particle? 

Shape: bubbles deform if larger 
than 2 mm. 

“Stick condition” at the interface? 

Bubble in a pure liquid: no. 

Bubble in a process: yes! 

Surface-active materials collect at 
the interface and create a “solid” 
interface 
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Slip velocity 

Medium Vi 

Particle   Vp 

Slip velocity:  Vs = Vp – Vi 

Depends on: 

Particle size    dp 

Density difference    Δρ= γ(part.) – ρ(medium) 

Medium properties    ρ(medium), η(medium) 

Particle shape    Ψ 
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Single particle in a fluid 

p  v dRe = ρ
η

Reynolds 
number 

Re<1 

103<Re<105 

1<Re<103 

Laminar 

Transition 

Turbulent 
2

Drag force (Re, shape)
2w
v = C A ρ
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Drag coefficient 

Re<1: Cw=24/Re 

103<Re<105: Cw=0.43 

1<Re<103: Cw=f(Re) 
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Settling velocity of a single sphere 
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Calculation of Settling velocity 

  General calculation procedure (single particle):  
 

1.       Estimate CW with graph Re-Cw 
2.      Calculate vs with estimated CW 
3.      Calculate Re with this vs 
4.      Determine new CW with graph 
5.      Calculate new vs with this CW  
6.      Repeat 3 t/m 5 until you have sufficient accuracy 
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Calculation of Settling velocity 
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  Alternative 
Procedure:  

 
1.       Compute Re2CW(Re) 
 
 
 
 
 
 
 
 
4.      Determine Re with graph 
5.      Calculate vs with this 
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Settling velocity: examples 

  Spherical particles of coal, sand and copper in water   
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Settling velocity: example 
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An approximately spherical particle of diameter 0.1 mm and 
density 2600 kg/m3 falls in oil with a density of 900 kg/m3 and 
viscosity of 0.003 Ns/m2. Calculate the slip velocity (terminal 
velocity) of the particle. 
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Kinetic gravity separator 

Plastic 
Al+ stone 

Cu,Pb,Zn 

Input  - stones, sinter, glass, heavy non ferrous 
metals, light non ferrous metals, organic fraction 
 
Output - organic fraction 
            - aluminium and stone fraction 
            - heavy non ferrous metals ( Cu, Zn, Pb) 
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Kinetic gravity separator 

2-4 mm Copper/Zinc/Aluminium Alloys

0%

20%

40%

60%

80%

100%

0,0 0,2 0,4 0,6 0,8 1,0 1,2

Velocity (m/s)

W
ei

gh
t

4-6 mm Copper/Zinc/Aluminium Alloys

0%

20%

40%

60%

80%

100%

0,0 0,2 0,4 0,6 0,8 1,0 1,2

Velocity (m/s)

W
ei

gh
t

6-8 mm Copper/Zinc/Aluminium Alloys

0%

20%

40%

60%

80%

100%

0,0 0,2 0,4 0,6 0,8 1,0 1,2

Velocity (m/s)

W
ei

gh
t

8-10 mm Copper/Zinc/Aluminium Alloys

0%

20%

40%

60%

80%

100%

0,0 0,2 0,4 0,6 0,8 1,0 1,2

Velocity (m/s)

W
ei

gh
t

Non-ferrous metals 2-10 mm 
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Rising Current Separation 

v-vsw

vw

Feed  

Water flow  

Light product   

Heavy product   

v-vws

Principle 
of 
separation 
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Battery processing 
Braubach, Germany 
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Definition of velocities 

νp : Particle velocity with respect to the wall of the system. 
u : Superficial fluid velocity w.r.t. the wall of the system, 
      i.e., the fluid velocity without particles present. 
νi : Interstitial fluid velocity w.r.t. the wall of the system, 
      i.e. the average velocity of the fluid between the particles. 
uν(ε) : Velocity of a swarm of particles with porosity ε in absence 
   of a superficial fluid velocity -> sedimentation velocity. 
νs= νp -νi : Slip velocity, i.e., the relative velocity between particle    
   and fluid.  This is the starting point of calculations. 

Note: vs is often used to indicate the superficial velocity. 
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Relation between slip velocity and others 

vp = 0 

vi = -vs 

u = -εvs 

Down velocities are defined as positive! 

(1- ε )vp + ε vi = 0 

vp = ε vs 

uv = vp = εvs 
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Many particles: Richardson & Zaki 

1
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Settling velocity at high solids concentrations 

( 1)( )  n
v su v εε ε== ⋅Explanation of n in: 

1. If solids go down, medium must go up: ε1 

2. Solids contribute to density of medium: ε(0.5-1) 

3. Increased shear: ε(n-2) 
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Settling velocity and slip velocity 

Medium Vi 

Particle   Vp 

Slip velocity: 

Vs = Vp – Vi 

Depends on: 

Particle size    dp 

Density difference    Δρ= γ(part.) – ρ(medium) 

Medium properties    ρ(medium), η(medium) 

Particle shape    Ψ 
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High solids concentrations: 
Hindered settling 

If solids go down, medium must go up: ε1 : 

Slip velocity vs and particle 
velocity uv=vp are the same 

ε=1 
ε<1 

Settling velocity uv = εvs(ε): 
smaller than slip velocity 

(1 )

(1 )

   ( ) ( )

i p

p p p

p i s

v v
v v v

v v v

ε ε

ε ε

ε ε ε

= − −

= + −

= − =
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High solids concentrations: 
Hindered settling 

2( )
18s

d gv γ ρ
η

−
=

Solids contribute to density of medium: ε(0.5-1) 

 Density of medium is ρ, so 
differential density is (γ-ρ) 

 

ε=1 
ε<1 

Density of medium is ερ+(1-ε)γ, 
so differential density is ε(γ-ρ) 

 ( (1 ) ) ( )γ ερ ε γ ε γ ρ− + − = −

3 ( )
s

gdv γ ρ
ρ
−

=

Laminar: 

 

Turbulent: 
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High solids concentrations: 
Hindered settling 

Increased shear: ε(n-2) 

 Much room for shear 

ε=1 
ε<1 

Room for shear bounded by 
neighboring particles 
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Cyclone 
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Separation in Hydrocyclone 
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Jigging 
Jigging is based on a segregation of particles due to 

periodical fluidisation (e.g. in an oscillating water flow) 

1

2

3

4

5

6
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Jigging 

Segregation by 
periodical 
fluidisation (e.g. 
in an oscillating 
water flow) 
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Jigging of thick PE-PP flakes 



Applied Earth Sciences 

TU Delft 
Delft University of Technology 

29 

Concentration criterion 
Taggart, 1956 

(Γh-ρ) / (Γl – ρ) 

Density medium 

Density heavy  Density light 

If > 2.5: always separation possible, down to finest sands 
1.5: sand sizes only 
1.25: gravel sizes only 
<1.25 very difficult if possible at all 
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Fluidized beds and fixed beds 
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Fixed beds: Ergun formula 

2
3

1 150(1 ) 1.75
vs vs

P u u
L d d

ε ε µ ρ
ε

 ∆ − −
= + 

 

u  = superficial velocity 
µ  = fluid viscosity 
dνs = the volume/surface diameter of a particle 
L  = height of the bed 

2

3 2

150(1 )

vs

P u
L d

ε µ
ε

∆ −
=

Laminar case  

(Carman-Kozeny equation) 
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Fluidization point of a fixed bed 

(1 )( )P g
L

ε γ ρ∆
= − −



Applied Earth Sciences 

TU Delft 
Delft University of Technology 

33 

Fluidized beds 

Two different approaches: 

1. Combination of Ergun/Carman Kozeny and 

2. Directly use:   

(1 )( )P g
L

ε γ ρ∆
= − −

( 1)( )  n
v su u v εε ε== = ⋅

Example: 

Oil with a density of 900 kg/m3 and viscosity of 0.003 Ns/m2 passes 
vertically upward through a bed of catalyst consisting of approx. 
spherical particles of diameter 0.1 mm and density 2600 kg/m3.         
At what mass flow rate per unit area of bed will fluidization occur 
according to Carman-Kozeny                                          versus 
Richardson and Zaki? 

2

3 2

150(1 )

vs

P u
L d

ε µ
ε

∆ −
=
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Viscosity of fluidized beds 

1 Poise = 
0.1 Ns/m2 
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Elutration in fluidized beds 

X X es s
k te= −

0

Amount of fines 
left in the bed with 
lower terminal 
velocity than 
fluidization 
velocity 
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Elutration in fluidized beds 

0 terminal velocity of finesν =
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ρs<ρb 

ρs>ρb 

Separation density of medium is ρb ≈ ερ+(1-ε)γ. 
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Laboratory Dry Fluidised Bed Separator 

Feeder 

Fluidised Bed 
Separator 

Sand Cycle 

Sand Bin 

Sink and Float 
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Sedimentation: very dilute streams 

t H
0

0

=
ν

AH
Q

τ =

Time needed for 
sedimentation 

Residence time Maximum 
capacity 

0Q Av=
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Sedimentation: concentrated streams 

Testing of suspensions 
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Sedimentation: concentrated streams 

Suspensions of several concentrations needed to 
predict behavior in sedimentation tank. 

Settling rate 
at 3% 
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Coe and Clevenger 

Di = initial dilution, mass of water per mass of solids 
Du= final dilution 
ν  = settling rate at dilution D 
Q = volumetric capacity of the tank 
C = volume fraction solid in the feed 

( )max
( )i u

u
D D D s

D DA QC
D

ρ
ρν> >

−
=

Estimated area needed for sedimentation tank: 
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Coe and Clevenger 

sQCρSolids flow in kg/s: 

Water going up in kg/s: 

Minimal settling rate in m/s: 

Di = initial dilution 

  = settling rate at 
dilution D Du= final dilution 

( )u sD D QCρ−
( )( ) u

s
D DD QC

A
ν ρ

ρ
−

>
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Kynch construction: single column test 

C H
H

C
i

2
0

0=

Concentration at point ‘2’ is 
estimated by 
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Sedimentation: example 

Dilution D (kg water/kg solid) 5.0 4.2 3.7 3.1 2.5 

Meas. rate of sedimentation (mm/sec)  0.20  0.12 0.094 0.070 0.050 

A slurry needs to be thickened from 5 kg of water per kg of solids to 1.5 kg of water 
per kg of solids at a capacity of 1.33 kg/s of solids. What is the required area A? 

D D - Du water to overflow ν 
sedimentation 
rate, m/sec 

(D - Du)/ν 
(sec/m) 

 5.0  3.5 2.00*10-4 1.75*104 
 4.2  2.7 1.20*10-4 2.25*104 
 3.7  2.2 0.94*10-4 2.34*104 
 3.1  1.6 0.70*10-4 2.29*104 
 2.5                 1.0 0.50*10-4 2.00*104 
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Filtration 
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Filtration 

Cake 

2

3 2

150(1 )c s

c s

P
dν

ε µν
δ ε
∆ −

=

ε and dvs unknown → 

 

Add pressure drop of cloth: 

∆P M
Ac s

c

c

= αµν

vs 

∆ ∆ ∆P P P M
A

Rf m c s
c

c
m= + = +









µν α

δc 

Cloth 

Ac 



Applied Earth Sciences 

TU Delft 
Delft University of Technology 

48 

Filtration 

2
fc c

f s m f m
c c

dVM CP R V R
A dt A

α αµν µ
   

∆ = + = +   
   

Rewrite the equation in terms of the 
volume of filtrate Vf that has passed 
through an area Ac of the cake: 

f
c s

dV
A

dt
ν=

c c fM C V= 3 kg solids/m  filtratecC =

→ 
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Two modes of Filtration 

2
f c

f f m
c

dV CP V R
dt A

αµ
 

∆ = + 
 

Constant pressure filtration  Constant rate filtration (batch) 

2
22
c

f f m f
c

CP t V R V
A

αµ
 

∆ = + 
 

If filter cloth is neglected:  

2 f
f c

c

P t
V A

Cαµ
∆

=

2
c

f f f m
c

CP Q Q t R
A
αµ
 

∆ = + 
 

Pressure increases linearly 
with time (Qf = Vf/t is a 
constant). 
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Constant pressure Filtration 
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Filtration: example 

A continuous rotary filter is required for the filtration of a 
suspension to produce 2 litres/s of filtrate. A sample was tested on 
a small laboratory filter of area 0.023 m2 to which it was fed by 
means of a slurry pump to give filtrate at a constant rate of 12.5 
cm3/s. The pressure difference across the test filter increased from 
14 kN/m2 after 300 s filtration to 28 kN/m2 after 900 s at which 
time the cake thickness had reached 38 mm. Calculate the area of 
a rotary drum filter, assuming that the resistance of the cloth can 
be neglected, and that the vacuum system is capable of 
maintaining a constant pressure difference of 70 kN/m2. The drum 
will rotate at a speed of 1 rev/min and 20% of the cloth will be 
submerged. 
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Cake washing 
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Drying 

W W
W

W W
W

w
d

d

d
w

w

=
+

=
−

1

1

Definition of moisture 
content: 

• on a wet basis: 

 

• on a dry basis: 
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Drying 

Drying is: 

• Heat of evaporation into contact with water 

• Evaporated water out 

Heat in: 

• convection 

• conduction 

• radiation/Ohmic 

 

Water out: 

• capillary flow 

• diffusion 

• vapor flow 
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Supplying the heat 

Convection: Turbulent hot air = fast and cheap 

Conduction: Heat through “laminar boundary layer” = 
slow and cheap 

Radiation/Ohmic: microwave, radio-frequency, electric 
currents = instantaneous and expensive process 
Efficiency of heat delivered/power used: 

• Microwave 50% (very flexible, cost ≈ 0.5 euro/Watt installed) 

• Radiofrequency 70% (less flexible: contacting problem) 

• Ohmic 100% (not flexible: difficult contacting) 
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Taking away the water: internal transport 
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Hot air drying: the “laminar” layer 

Convection 

 

Conduction 

 

Capillary flow/ 

Conduction 

Turbulent air 

 

Laminar air layer 

 

Porous solid 

 

  Balance: 

T= hot gas 
temperature 

 

T = Ts 
(surface) 

 

 

p= hot gas 
water vapor 
pressure 

 

p = pvap(Ts) 
(surface) 

 

 dW dt A T H kA P/ /= =α ∆ ∆ ∆
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Drying with hot air 

Constant rate period 

Falling rate period 

Constant rate: surface is wet, laminar layer is the bottleneck for heat and mass transfer. 

Falling rate: surface is (partially) dry, capillary flow is the bottleneck for mass transfer.  
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Drying: fluidized bed 

Moisture content single 
particle: 

 

Residence time needed: 

 

Actual distribution of 
residence time: 

 

Average final moisture 
content: 

 

W
W

t
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Drying: measurement and  
heat and mass balance 
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Heat of water (liq and vap) 

T(ref)                                                  T 

H                                                 

H(ref)                                                

Vapor                                                 

Liquid 
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Drying: measurement and  
heat and mass balance 

Heat and Mass Balance: 

 Material Mass in        
kg/s 

Mass out       
kg/s 

Heat in            
MJ/s 

Heat out          
MJ/s 

Solids Msolid Msolid MsolidCp,solTsolid,in MsolidCp,solTsolid,out 

 

Air Mair Mair MairCp,airTair,in MairCp,airTair,out 

Liquid Water Mliq 

 
M’liq MliqCp,liq(Tliq,in-Tref) M’liqCp,liq(Tliq,out-

Tref) 

Water Vapor Mvap 

 
M’vap=Mliq -
M’liq +Mvap 

MvapCp,vap(Tvap,in-
Tref) + MvapHref 

 

M’vapCp,vap(Tvap,out-
Tref) + MvapHref 
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Heat and mass balance: example 

Granular material with 40% moisture (wet basis) is fed to a 
countercurrent rotary dryer at a temperature of 295 K and is 
withdrawn at 305 K containing 5% moisture. The hot air contains 
0.006 kg water vapor per kg of dry air, enters at 385 K and leaves at 
310 K. The dryer handles 0.125 kg/s wet stock. Assuming that 
radiation losses amount to 20 kJ/kg dry air used, determine the 
weight of dry air supplied to the dryer per second and the humidity 
of the air leaving it. 
 Latent heat of water vapor H at 295 K = 2449 kJ/kg 
 Specific heat of dried material    = 0.88 kJ/kg K 
 Specific heat of dry air     = 1.00 kJ/kg K 
 Specific heat of water vapor      = 2.01 kJ/kg K 
 Specific heat of liquid water      = 4.18 kJ/kg K 
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Cyclones 
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Cyclones 
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Cyclones: dimensions 

0

0.4

5

0.28

0.34

c

c

i

c

c

l
d
L
d
d
d
d
d

=

=

=

=

dc = cyclone diameter 
l  = length of vortex finder 
L  = length of the cyclone 
di = inlet diameter 
d0 = overflow outlet diameter 
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Cyclones: cutpoint 

Centrifugal force on particle: 

 

Equilibrium with drag of inflowing 
fluid: 

 

Virtually all fluid is drawn into the 
vortex: 

 

 

23
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Cyclones: cutpoint 

2
2

9
( )s t

Qd
u L

µ
π ρ ρ

=
−

Velocity profile of cyclone: 

 

Tangential velocity at inlet:              Q = Ai ut0  

 

Vortex starts at r = 0.2d0: 

 

 

0 2
c

t t
du u
r

=

2
2 03.6

( )
i
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d LQ

µ
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Cyclones: pressure drop 

2
f

Q
pA

α

ρ

=
∆

   

Q    = cyclone capacity (m3/s) 
Af   = area of the feed opening (m2) 
ρ    = density of the fluid (kg/m3) 
∆p  = pressure drop across the cyclone (N/m2) 
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Cyclones: classification curve 
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Cyclones: classification curve 

y
1
y R

R
−′ =
−

R 

y 

y’ 
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Cyclones: cutpoint 

0.68
0

50 0.53 0.5

( )13.7
( )

i

s

d dd
Q ρ ρ

=
−

Dahlstrom: 
d50 = cut point (micron) 
d0  = overflow diameter (cm) 
di  = inlet diameter (cm) 
Q  = flow rate (m3/h) 
ρs  = specific gravity of solids 
ρ  = specific gravity of fluid 

0.46 0.6 1.21 0.063
0

50 0.71 0.38 0.45 0.514.8
( )

V
c i

u s

d d d ed
d h Q ρ ρ

=
−

Plitt: 
dc  = cyclone diameter (cm) 
du = apex diameter (cm) 
V  = vol. perc. solids 
h  = height of vortex (cm) 
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Cyclones: cutpoint 

Replace V in Plitt’s formula by the correct expression 
in ε. Do you expect this behavior with V on the basis 
of Richardson and Zaki (Note that                               ):  

0.46 0.6 1.21 0.063
0

50 0.71 0.38 0.45 0.514.8
( )

V
c i

u s

d d d ed
d h Q ρ ρ

=
−

 
   V = vol. perc. solids 

2 2 '2 2
4.6550 50( ) ( )

18 18
t t

r
d u d uu

r r
γ ρ γ ρ ε

η η
− −

= =

4.65 4.65(1 )e εε − −≈
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Magnetic separation 
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Magnetic separation 

Magnets (B in Tesla): 

• Permanent magnets        
0.3-0.6 Tesla 

• Electromagnets               
1.5 Tesla 

• Superconducting magnets                     
5 Tesla 

Magnetic materials (M in A/m): 

• Ferromagnetic   100,000-
2,000,000 A/m 

• Paramagnetic      1000-10,000 
A/m 

• “Non-magnetic”   <100 A/m 

A magnet’s reach is roughly the width W of its poles and the force 
on a volume V of magnetic material with magnetization M is 
roughly: BF MV

W
=
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Magnetism 

Principle: 

1. Magnet creates field 

2. Field magnetizes particle 

3. Particle is attracted 
towards increasing field 
strength 

magnet S
P

mild
steel
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Magnetic materials 

 Paramagnetic                                Ferromagnetic 

0                        1                       2 
                   H [million A/m] 

0                         1                       2 
                   H [million A/m] 

Magnetite Fe3O4 

4000 
 
M 
[A/m] 
 
 
2000 
 
 
 
 
 
 
      0 
 
 
 
 
 

 

300000 
 
M 
[A/m] 
 
 
150000 
 
 
 
 
 
 
         0 
 
 
 
 
 

 

 Goethite FeOOH 

Saturation 
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Magnetic materials 

Magnetic materials: 

• Ferromagnetic:     Steel, Magnetite, Hematite, Ilmenite 

      Main parameter is saturation magnetization M = 100,000-2,000,000 A/m 

• Paramagnetic:      Goethite, Chromite   M =1000-10,000 A/m 

        Main parameter is magnetic susceptibility χ = 0.001 – 0.01  

• “Non-magnetic”   <100 A/m 

3
s

χ H
χ  (volume) magnetic susceptibility

χχ    specific magnetic susceptibility [m /kg]

M

ρ

=

=
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Magnetic separation: Conclusion 

Assume: H varies in coordinate z: gradient dH/dz 
 

0

0

0

0

( H)F
r

H  H    paramagnetic particle
z
H     saturated ferromagnetic particle
z

H H     non-saturated ferromagnetic particle
z

m

sat

d P
d

dV
d
dM V
d

V d
N d

µ

µ χ

µ

µ

=

=

=

=

 
 



Steel scrap:  
H > 300,000 A/m 
 
H < 300,000 A/m 
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Demagnetizing factor N 

Particle shapes: 

• Granular  N=1/3 

• L/D=4  Cylinder  

               N=0.1 

• D/d=4  Disk    

               N=0.13 

• Scrap:  N=0.05-0.2 
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Magnetic separation 
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Magnetic separation: Dipole magnet 

Dipole magnet: recovery of steel from a large distance (z = 0.5 m) 
 

z 
 

 

 

B 

 C 
Mm 

    



Applied Earth Sciences 

TU Delft 
Delft University of Technology 

84 

Magnetic separation: Multi-pole magnet 

Multi-pole magnet: recovery of (partly: e.g. 20%) steel objects from a 
short distance (z = 0.1-0.3 m) 
 

0

6
0

10 2 3

H HF    
z

  / 0.2
H 8000 10 0.2  H
z 0.2 0.2 1.2 10

      6 10  A / m

steel

steel steel

steel

V d
N d

mg V g
gNd

d

µ

ρ
ρ

µ −

=

= =

⇒ = =

=

 



 
w 

 z 

Steel 

 

 
 

Mm Mm Mm Mm 

Mass 
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Magnetic separation: Multi-pole magnet 

Multi-pole magnet: recovery of (partly: 20%) steel objects from a 
short distance (z = 0.1-0.3 m) 
 

10 2 3H  H 6 10  A / m
z

d
d

⇒ =

 
w 

 z 

Steel 

 

 
 

Mm Mm Mm Mm 

Mass 

2 - z/wH e   [A/m]mM π
π

=

22H - z/we   [A/m ]mMd
dz w

π=

Try e.g. z=0.1m; w=0.12m; Mm=1,000,000 A/m 
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Magnetic separation: Drum magnet 

Drum magnet: recovery of objects containing steel in contact with a 
multipole magnet (z = 0.02-0.03 m) 
 

0
HF    saturated ferromagnetic particle
zsat

dM V
d

µ=


Msat=2,000,000 A/m; w=0.06 m 

22H - z/we   [A/m ]mMd
dz w

π=

What is min. % steel 
for recovery?? 



Applied Earth Sciences 

TU Delft 
Delft University of Technology 

87 

Magnetic separation: paramagnetic 
materials 

0

0

3

0

13 2 3

0

HF  ;     H
z
H  H       paramagnetic particle
z

:
0.001 ;    5000 kg/m

HH
z

HH 4 10  A / m
z

dMV M
d
dV
d

Example

dmg gV V
d

d g
d

µ χ

µ χ

χ ρ

ρ µ χ

ρ
µ χ

= =

=

≈ =

= =

⇒ = =



H≈1,000,0000 A/m 

dz is mm-size and so is the 
particle!!! 

N S 

HdH/dz=1015 
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Measurement of χs 

Frantz Isodynamic separator: balance of gravity and known 
magnetic force 
 

s 2

sin(α)=f
I

χχ
ρ

= ⋅

2
magn

grav

F c V

F sin

I
Vg
χ

ρ α

= ⋅

=
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Eddy current separation 
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Eddy Current Separation (ECS) 

EC Torque 

Magnetic 
Non-
metal Metal 

EC Force 
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