

1. Screening

Contraction of the second second second

Contents

- 1. Introduction
- 2. Passage probabilities
- 3. Kinetics
- 4. Parameters
- 5. Decks
- 6. Efficiency
- 7. Capacity
- 8. Equipment
- 9. Sieve analysis

Objectives

• Splitting in several size classes, each intended for a process optimised for that particular size class

• Classifying into sizes as required by the market (examples: heating coal, gravel, sands)

- Undersize removal before crushing
- Recovery of HMS medium solids (drain and rinse screening)
- Desliming (generally below 0.5 mm)
- Dewatering

November 2012

Effect of material properties:

- particle shape
- bulk density
- moisture content
- electrostatic charge
- percentage of problematic size fraction (0.7 < x < 1.5) with x = mesh size.

Effect of the **screening method**:

- amplitude of vibration
- frequency of vibration
- screen angle with the horizontal
- screen length and width
- direction of vibration
- feeding method
- capacity.

Effect of the **screen deck**:

Ι

- mesh size
- mesh shape
- uniformity of the deck
- free screen surface
- construction material (steel, rubber or plastics).

Mesh versus µm

November 2012

Tyler mesh size is the number of openings per (linear) inch of mesh. To calculate the size of the openings in a mesh the thickness of the wires making up the mesh material must be taken into account.

Sieve size (mm)	Tyler (approx)
4.75	4
2.00	9
1.00	16
0.422	35
0.251	60
0.152	100
0.125	115
0.104	150
0.066	250
0.044	325

Screening result

 $X_{cr} = critical$ particle size

TUDelft

Passage probability

Probability that particle is still on the screen:

after 1 attempt
$$1 - P = \left[1 - \left(\frac{D - x}{D}\right)^2\right]$$

after i attempts
$$\mathbf{r}_i = \left[1 - \left(\frac{\mathbf{D} - \mathbf{x}}{\mathbf{D}}\right)^2\right]^T$$

*f***U**Delft

7

Fractional retention / passage trials

Fractional retention / passage trials

$$r_{i} = \left[1 - \left(\frac{D - x}{D}\right)^{2}\right]^{i} \rightarrow \text{Simplify} \rightarrow \ln\left(r_{i}\right) = i \cdot \ln\left[1 - \left(\frac{D - x}{D}\right)^{2}\right]$$

November 2012

$$\mathbf{r}_{i} = \left[1 - \left(\frac{\mathbf{D} - \mathbf{x}}{\mathbf{D}}\right)^{2}\right]^{i} \quad \Rightarrow \text{Simplify} \Rightarrow \quad \ln\left(\mathbf{r}_{i}\right) = \mathbf{i} \cdot \ln\left[1 - \left(\frac{\mathbf{D} - \mathbf{x}}{\mathbf{D}}\right)^{2}\right]$$
$$\Rightarrow \text{Taylor series} \Rightarrow \quad \ln(\mathbf{r}_{i}) \approx i \left(\frac{\mathbf{D} - \mathbf{x}}{\mathbf{D}}\right)^{2}$$

$$r_{i} = \left[1 - \left(\frac{D - x}{D}\right)^{2}\right]^{i} \implies \text{Simplify} \implies \ln(r_{i}) = i \cdot \ln\left[1 - \left(\frac{D - x}{D}\right)^{2}\right]$$

$$\Rightarrow \text{Taylor series} \implies \ln(r_{i}) \approx i \left(\frac{D - x}{D}\right)^{2}$$

$$\Rightarrow \text{Take } x = d_{0.5} \text{ and } r_{i} = 0.5 \implies \ln(0.5) = -i \cdot \left(1 - \frac{d_{0.5}}{D}\right)^{2} \implies d_{0.5} = D - \left(\frac{0.832 \cdot D}{\sqrt{i}}\right)^{2}$$

$$\left[-\left(\frac{D-x}{D}\right)^{2} \right]^{i} \rightarrow \text{Simplify} \rightarrow \ln\left(r_{i}\right) = i \cdot \ln\left[1 - \left(\frac{D-x}{D}\right)^{2}\right]$$

→ Taylor series →
$$\ln(r_i) \approx i \left(\frac{D-x}{D}\right)$$

$$\rightarrow \text{Take } x=d_{0.5} \text{ and } r_i=0.5 \rightarrow \ln\left(0.5\right) = -i \cdot \left(1 - \frac{d_{0.5}}{D}\right)^2 \rightarrow d_{0.5} = D - \left(\frac{0.832 \cdot D}{\sqrt{i}}\right)^2$$

I = passage trials / m = screen indexL = screen lengthD = effective screen opening

$$\mathbf{d}_{0.5} = \mathbf{D} - \frac{1}{\sqrt{\mathbf{L}}} \cdot \left(\frac{\mathbf{0.832} \cdot \mathbf{D}}{\sqrt{\mathbf{I}}}\right)$$

13

November 2012

 $r_i =$

$$\mathbf{d}_{0.5} = \mathbf{D} - \frac{1}{\sqrt{\mathbf{L}}} \cdot \left(\frac{\mathbf{0.832} \cdot \mathbf{D}}{\sqrt{\mathbf{I}}}\right)$$

D = 10 mm I = 40 passages/m

November 2012

$$\mathbf{d}_{0.5} = \mathbf{D} - \frac{1}{\sqrt{\mathbf{L}}} \cdot \left(\frac{\mathbf{0.832} \cdot \mathbf{D}}{\sqrt{\mathbf{I}}}\right)$$

D = 10 mm I = 40 passages/m

 $\mathbf{r}_{i} = \left[1 - \left(\frac{\mathbf{D} - \mathbf{x}}{\mathbf{D}}\right)^{2}\right]^{i}$

 $i = I^*L$

Predict size distribution under-, overflow

November 2012

Screening kinetics

Experiments Whitby (1958)

- Linear relationship between log(undersize) against time
- 2. Transition
- Linear relationship between undersize on a log-probability scale against time (also equilibrium zone)

Approximation of kinetics: $C(W,t) = 100 \cdot \left[1 - \exp(-kt)^n\right] \%$ (n, k = constant) Taylor's series $C(W,t) \approx 100 \left(1 - \frac{1}{1 + kt^n}\right) = 100 \cdot \frac{kt^n}{1 + kt^n}$ K, n: Constants

17

Screening parameters

Throw angle α and inclination β .

Machine parameter $K = \frac{a\omega^2}{g} \approx \frac{an^2}{90000}$

20000

Screening parameters

aAmplitude of the screen deck[cm]nFrequency $[min^{-1}]$ ω Angular velocity $[s^{-1}]$ α Throw angle $[^{\circ}]$ β Inclination of screen deck $[^{\circ}]$

Screening parameters

aAmplitude of the screen deck[cm]nFrequency $[min^{-1}]$ ω Angular velocity $[s^{-1}]$ α Throw angle $[^{\circ}]$ β Inclination of screen deck $[^{\circ}]$

TUDelft

Screen parameter

 $\mathbf{K}_{v} = \frac{(\mathbf{b}_{s})\max}{\mathbf{g}\cdot\cos(\beta)}$

Particle jumps if:

 $K_v > 1$

Screen parameter

 $K_{v} = \frac{(b_{s}) \max}{g \cdot \cos(\beta)}$

Particle jumps if:

 $K_v > 1$

 ψ = angle between centrifugal acceleration vector and screen surface

22

Particle thrown upward for
$$\Psi = \Psi_{L}$$
 $\sin(\Psi_{L}) = \frac{g \cdot \cos(\beta)}{a \cdot \omega^{2}} = \frac{\cos(\beta)}{K} = \frac{1}{K_{v}}$
Throw angle
 $\alpha = 90^{\circ} - (\Psi_{L} + \beta)$

Optimised screening conditions

- Calculate α for different K and β
- Calculate particle trajectory
- Determine impact location
- Optimise
 - Amplitude a
 - Frequency n
 - Angle β

for a given feed material

Optimised K_v

K_v<1.5 no screening 1.6<K_v<1.8 soft minerals, coal 2.1<K_v<2.3 difficult materials, cokes 3<K_v<3.5 easy mat., high capacity K_v≈3.3 resonance, optimum $K_{\nu} = \sqrt{1 + (n\pi)^2}$ K_v>>4 transport only

Feed size determines optimised a and n at a given K_v :

- For loosening coarse feed: larger a, lower n
- For finer feeds it is reverse.

At constant K_v materials are thrown higher at larger a and lower n as reverse.

As a consequence for fines screening small a at higher n are used, and reverse for coarse feeds.

Screen decks

Flat Top

sizing of all meshes.

most suitable.

Regular shape particles

Gives freest flow across surface. Minimises blinding and material breekage. Uniform wear gives accurate siring during life, Relatively low efficiency, good for scalping. **Double Crima**

Most commonly used. Rigid construction. Uneven surface breaks up material being screened and increases stroughput. Gives good aizing with small apertures, or small % open area.

% open area. Decreased

Accuracy, reduced

blinding.

MESH: Crimps

Firmer mesh for larger % open area, especially on vibrating screens, Suitable for scalping operations. **Corrugated Crimp**

flow), Minimum blinding

because of slot length

and wire vibration.

Wires in every third or fifth crimp to give rigid mesh with large % open erea. Not suitable for heavy duty.

- Perforated plate
- Grizzly rod deck
- Bar deck
- Rod deck
- Wedge-wire deck
- Woven wire screen media
- PU screening media 🔍
- Rubber screening media

Screening efficiency

	Fractions		
	Mass	% coarse	% fine
feed	G _v	g _v	f_v
oversize	G_{g}	ggg	f_g
undersize	G _f	g _f	$\mathbf{f}_{\mathbf{f}}$

Newton's screening efficiency:

$$\Xi_{n} = 100 \cdot \left[\frac{\left(G_{v} - G_{f}\right) \cdot g_{g}}{G_{v} \cdot g_{v}} - \frac{\left(G_{v} - G_{f}\right) \cdot \left(1 - g_{g}\right)}{G_{v} \cdot \left(1 - g_{v}\right)} \right]$$

	Fractions		
	Mass	% coarse	% fine
feed	G_v	g _v	f_v
oversize	Gg	ggg	f_g
undersize	G _f	${f g}_{ m f}$	$\mathbf{f}_{\mathbf{f}}$

Newton's screening efficiency:

$$\mathbf{E}_{n} = 100 \cdot \left[\frac{\left(\mathbf{G}_{v} - \mathbf{G}_{f}\right) \cdot \mathbf{g}_{g}}{\mathbf{G}_{v} \cdot \mathbf{g}_{v}} - \frac{\left(\mathbf{G}_{v} - \mathbf{G}_{f}\right) \cdot \left(1 - \mathbf{g}_{g}\right)}{\mathbf{G}_{v} \cdot \left(1 - \mathbf{g}_{v}\right)} \right]$$

Mass balance: $G_v \cdot g_v = (G_v - G_f) \cdot g_g + G_f \cdot g_f$

	Fractions		
	Mass	% coarse	% fine
feed	G_v	g _v	f_v
oversize	Gg	gggg	f_g
undersize	G _f	g_{f}	$\mathbf{f}_{\mathbf{f}}$

Newton's screening efficiency:

$$E_{n} = 100 \cdot \left[\frac{\left(G_{v} - G_{f}\right) \cdot g_{g}}{G_{v} \cdot g_{v}} - \frac{\left(G_{v} - G_{f}\right) \cdot \left(1 - g_{g}\right)}{G_{v} \cdot \left(1 - g_{v}\right)} \right]$$

Mass balance: $\mathbf{G}_{v} \cdot \mathbf{g}_{v} = (\mathbf{G}_{v} - \mathbf{G}_{f}) \cdot \mathbf{g}_{g} + \mathbf{G}_{f} \cdot \mathbf{g}_{f}$

$$\rightarrow E_{n} = 100 \cdot \left[\frac{(g_{g} - g_{v}) \cdot (g_{v} - g_{f})}{g_{v} \cdot (1 - g_{v}) \cdot (g_{g} - g_{f})} \right]$$

	Fractions		
	Mass	% coarse	% fine
	C		
feed	G _v	g_v	Ĭ _v
oversize	G_{g}	gg	f _g
undersize	$G_{\rm f}$	$g_{\rm f}$	\mathbf{f}_{f}

Newton's screening efficiency:

$$E_{n} = 100 \cdot \left[\frac{\left(G_{v} - G_{f}\right) \cdot g_{g}}{G_{v} \cdot g_{v}} - \frac{\left(G_{v} - G_{f}\right) \cdot \left(1 - g_{g}\right)}{G_{v} \cdot \left(1 - g_{v}\right)} \right]$$

Mass balance: $\mathbf{G}_{v} \cdot \mathbf{g}_{v} = (\mathbf{G}_{v} - \mathbf{G}_{f}) \cdot \mathbf{g}_{g} + \mathbf{G}_{f} \cdot \mathbf{g}_{f}$

$$\rightarrow E_{n} = 100 \cdot \left[\frac{\left(g_{g} - g_{v}\right) \cdot \left(g_{v} - g_{f}\right)}{g_{v} \cdot \left(1 - g_{v}\right) \cdot \left(g_{g} - g_{f}\right)} \right]$$

 $65\% < E_n < 75\%$ compromise capacity / efficiency $E_n = 90\%$ dry lab. test

Partition curve

November 2012

Separation sharpness $T = \tan(\alpha_{x50})$

November 2012

Screening capacity

- Capacity ≈ proportional to mesh size
- Wet screening < 0.2 mm rarely economic
- Dry screening < 2 mm rarely applied

Screening capacity

- Capacity ≈ proportional to mesh size
- Wet screening < 0.2 mm rarely economic
- Dry screening < 2 mm rarely applied

Screening capacity

- Capacity ≈ proportional to mesh size
- Wet screening < 0.2 mm rarely economic
- Dry screening < 2 mm rarely applied

- $\gamma < 15\%$ (otherwise transport becomes a delimiting factor)
- 0.5 mm < (mesh size) < 250 mm

Moisture has a major effect on capacity:

- levels between 8% and 10% reduce capacity down to 0.8C
- efficient spraying may increase it up to 1.25C

Screening equipment

Grizzly / drain panel

November 2012

(Ankerpoort N.V.)

(Steenberg Laura)

- For dewatering fines
- "centrifugal effect" sweeping off water
- Cut size 0.5 ... 1 mm = 0.5 * slot size
- Invented by Staatsmijnen (DSM) in the 1950's for fine coal

Vibrating screens

- (Double) unbalance drives (common)
- Electromagnetic drives (0.1 ... 4 mm only)
- Excenter drives (only older installations)

Vibrating screens

- Linear horizontal
- Linear inclined
- Banana
- Circular inclined
- Elliptical inclined
- Resonance
- Modular, Omni screen
- Multi-deck screen

Horizontal screen

November 2012

Horizontal screen

November 2012

Multi-slope / Banana screen

Better feed distributionFor high fines content

November 2012

Vibrating inclined

54

Novemb

Vibrating inclined: deck

Allgaier screen

- Circular screen deck, central feed
- Compact design
- Extraction of more than 2 size fractions

November 2012

Non-vibrating screens

Trommel screen

November 2012

Non-vibrating screens

Roller screen

November 2012

Wet fines screening

Fines screening

Dry fines screening

Problematic moisture content ≈ 10% (for coal) → agglomeration

Solution:

- Increase the forces on the particles (increase K_v).
- Drying of the feed
- Adding water to the feed

Dry fines screening

- <u>Heated-deck screens</u>: Stickiness is reduced by heating the mesh by electric currents.
- **Piano-wire decks**: Individually tensioned pieces of pianowire in the direction of flow avoid bridge formation by vibration of the wire.
- <u>Harp screens</u>, duo-sieves etc. have a corrugated wire shape and rely on the same principle.
- <u>Sta-Kleen decks</u>: Captive rubber balls are mounted below a standard mesh. As the screen vibrates, the balls strike the mesh and destroy any bridges.
- **Probability screens** (Mogensen)
- Flip-flow or Hein Lehmann screen

Mogensen sizer

November 2012

Flip-flow /Hein Lehmann

Dewatering screen

(Anglo coal)

Sieve analysis

Geometric mean:

 $x_i = \sqrt{m_i m_{i+1}}$

Sieve kinetics

68

November 2012

2. Classification

Contents

- 1. Introduction
- 2. Principle
- 3. Hydraulic classifiers
- 4. Pneumatic classifiers
- 5. Cyclones

Objectives of classification

- Separation on particle size
- (Sometimes)
 - On density

Known as density or shape separation

- On particle shape
- On a combination of the three
 - Density and shape influence result !

Why classification ?

Screening:

- Capacity ≈ proportional to mesh size
- Wet screening < 0.2 mm rarely economic
- Dry screening < 2 mm rarely applied

Typical grinding operation:

• 20 – 150 µm

Pneumatic classification

- Gravity
 - Horizontal
 - Vertical
 - air current
- Centrifugal force
 - Cyclone
 - Windsifter

Hydraulic classification

Gravity

- Sedimentation tank
- Rising current
- Thickener
- Multi-directional water
- Pulsating

Centrifugal

- Clarifier
- Hydrocyclone

Principle

Settling velocity of larger particles in air or water is

• Higher

Trajectory of larger particles is more difficult to change by

- Air flow
- Water flow

See part B

Hydraulic classifiers

- 1. Clearing cones, settling cones
- 2. Mechanical classifiers
- 3. Rising current classifiers

Clearing cones

Single stage or Multi stage

- Feed < 3 mm
- Cut size 0.25 0.1 mm

Applications

- Sand processing
- Coal slurry thickening

Mechanical classifiers

- Rake classifiers
- Screw classifiers
- Applications
- Cut sizes in the mm range
- Grinding circuits, but
 - Modern systems: cyclones (50-250 µm) or screens (larger cut sizes)
- Water treatment
- Environmental engineering

Method to estimate capacity on page 38, 39 of course notes

Principle mech. classifier

Screw classifier

• Most common

November 2012

Rake classifier

November 2012

Rising current

- Cut sizes 0.4 2.5 mm
- $1.4 < E_p < 2.2$

$$E_p = \frac{x_{75} - x_{25}}{2}$$

• Numerous designs exist

Applications

• Dredging, sand cleaning, industrial minerals

Pneumatic classifiers

- Cut sizes 5 500 µm, sometimes more
- Air is:
 - Recycled,
 - fresh,
 - or a combination
- Tasks of the classifier:
 - 1. Constand feed supply to separation zone
 - 2. The separation
 - 3. Separating air from products

Cross flow classifier

- Simple
- Cut sizes 0.2 0.6 mm
- Solids concentration < 1.5 kg/m³

$$C_{sift} = Auc_s = A\partial v_{CS}c_s$$

A=cross sectional area of sifter, u=air velocity, c_s =solids concentration of sifter air, v_{CS} stationary settling velocity of the cut-size particle $\delta=u/v_{CS}$.

Zig-Zag classifiers

- Cut sizes 0.1 10 mm
- $1.2 < E_p < 1.7$
- Multi-stage arrangement

Κ, ° 0 ٥ ٥ 0 o ο റ്റ് °°0 0000 000 HS رم⁶، 0 \diamond ο ° 0 ZS K₁°č 0 FI

November 2012

Centrifugal classifier ("Deduster")

- Feed injected in air current from rotating table
- Cut size variable by changing table speed
- Cut sizes 0.05 0.6 mm
- $1.5 < E_p < 3.0$
- Diameters up to 8 m, 500 t/h
- Applications: Limestone, cement, coal

Capacity data

Cement	Cut size ≈90µm, 60%<90µm	
Sifter diameter [m]	Capacity [t/h]	Power draw [kW]
1.5	56	46
2.5	1520	715
3.5	3060	2040
5.0	50120	5075
Coal	Cut size 500µm, ≈25%<500µm	
Sifter diameter [m]	Capacity [t/h]	Power draw [kW]
1.5	≈14	≈6
2.5		-10
2.0	≈75	≈16

Cyclones

- "Wrap-around" settling tank
- Centrifugal acceleration
- Simple and cheap

Diameter determines d₅₀

- Mining industry:
 - Typically 4- 220 μm
 - Diameter 250 830 mm
- High dilution
- Not for viscous fluids

\rightarrow Principles in part B !

Bank of cyclones

- High capacity
- Small cut size

Cyclone design

Wear of liner and in-, outlets is an issue

Performance chart

CYCLONE CAPACITY

November 2012

