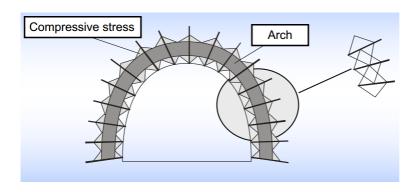

Rock bolting

Bolting concepts


Hang up concept

Beam concept

Rock arch concept

Types of bolts

Expansion bolts

Advantages

- Relatively inexpensive
- Immediate support action after installation
- Torque applied to bolt head by rotating → tension accumulates in bolt
- High bold loads can be achieved

Disadvantages

- Limited use in moderately hard to hard rock
- Looses reinforcement capacity as result of blasting
- Only for temporary reinforcement unless corrosion protected

Cement grouted cablebolt - twin steel strand

Advantages

- Inexpensive
- Competent and durable
- Can be installed to any length in narrow areas

Disadvantages

- Using standard cement requires several days curing before cable can take full load
- Quality of grouting difficult to check
- Not to be used in water carrying boreholes

Resin grouted rockbolt - rebar

Advantages

- Durable reinforcement when properly installed
- High load bearing capacity in hard rock conditions
- Rapid support after installation

Disadvantages

- Borehole diameter crucial to proper mixing and setting of resin
- Difficulties with resin cartridges in underground environment
- Resin can be messy and hazardous to handle
- Resin has a limited shelf life

Friction anchored rockbolts - Swellex

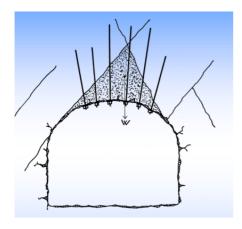
Advantages

- Rapid and simple installation
- Immediate support action after installation
- Can be used in a variety of ground conditions

Disadvantages

- Relatively expensive
- Long term installation requires coated Swellex
- Requires a pump for installation

Friction anchored rockbolts - Split set


Advantages

- Simple installation
- Immediate support action after installation
- No hardware other than jackleg or jumbo boom for installation
- Easy application of wire mesh

Disadvantages

- Relatively expensive
- Borehole diameter is crucial in prevention of failure during installation
- Successful installation of longer bolts can be difficult
- Cannot be used in long term installations unless protected against corrosion

Support design

 $n = (SF \times W) / F$

n = number of rock bolts

SF = safety factor

W = weight of wedge (= area x depth x specific gravity of rock)

F = load bearing capacity of one bolt