ELECTRICITY

CONDUCTIVITY

The resistance is defined as the ratio of the electric field strength and the electric current

The specific resistance "R" or Ro is defined as the resistance over a specific volume of matter

Formation resistivity factor; defined by the matrix and pore content: F or $F_R = C_w/C_o$

A rock sample or formation and its resistivity R or Ro consist of:

Non-conductive components:

- matrix minerals; water-poor silica minerals (quartz, feldspar), carbonates, carbonaceous matter, hydrocarbons
- fresh water

Conductive components:

- matrix ore minerals; magnetite, pyrite, galena as a semiconductor
- matrix water bearing silica; shales, clays
- brine

Resistivity "R" is often replaced by conductivity "C"

- C has the redefined unit of mho/m
- To avoid very small values, 1/(1 ohm) is valued as 1000 m.mho (millimho's).

The relation between F_{R} and rock porosity for capillary pore space

Relation between FR and matrix cementation/compaction

Archie-1:
$$F = F_R = \frac{1}{\varphi^m} = \frac{R_o}{R_w} = \frac{C_w}{C_o} \longrightarrow \log F = -m\log\varphi$$

"m": the cementation factor or lithology exponent

The total rock resistivity Ro decreases with increasing porosity for the samekind of pore geometry.

The pore geometry considered as a function of the lithology and the texture: Very tortuous or poorly connected pores have a higher resistivities

Humble general formula:
$$F = F_R = \frac{a}{\varphi^m}$$

"a" depends on varieties, such as rock type, variation in pore type, quality of the measurement,

Often used standard fot the Humble relation: $F = F_R = \frac{0.62}{\sigma^{2.15}}$

Relation between FR and matrix cementation/compaction

Relation between FR and matrix cementation/compaction

Sands and sandstone relation of cementation factor (m) and sand consolidation				
Consolidation	Atmospheric	in-situ		
very unconsolidated sand shallow potable water reserv	oirs 1.2	1.2		
unconsolidated sand	1.4	1.6		
unconsolidated to friable sand	1.5	1.7		
friable sandstone	1.6	1.8		
hard to friable sandstone	1.7	1.9		
hard sandstone	1.8	2.0		
very hard sandstone	2.0	2.2		

Carbonates Relation of cementation factor (m) and Archie classification.			
Consolidation	atmospheric	in-situ	
I BCD, interconnected	2.2	2.4	
I BCD, moderate to abundant, poorly interconne	cted 2.6	2.8	
I/II-II, no vugular porosity	2.0	2.2	
I/ III-III,			
I/II-II BC, interconnected	2.2	2.4	
I/III-III BCD, moderate, poorer interconnection			
LIII-II BCD abundant, , poorer interconnection	2.6	2.8	
I/III-III			

Relation between FR and the water content (Sw)

Relation between FR and the water content (Sw)

LABORATORY AND WILD LIFE

Relation between FR and the water content (Sw)

LABORATORY AND WILD LIFE

- *di* : diameter of the flushed zone, i.e. the zone through which several pore volumes of filtrate circulated, containing a residual hydrocarbon saturation.
- Dj: diameter to the virgin or uninvaded zone.
- *dh* : diameter of the borehole
- hmc: thickness of the mud cake
- *i* : thickness of the layer
- R_w : resistivity of the formation water in the uninvaded pores
- R_{mf} : resistivity of the mud filtrate
- R_{mc} : resistivity of the mud cake
- R_m : resistivity of the mud

IMPORTANT: WELL TERMINOLOGY

Resistivity & conductivity Resistivity tools

Short normal (SN), Long normal (LN), and Lateral tool MUD **Potential** . M Equipotential surface d M Current flow lines Equipotential Μ Current distribution undisturbed Current distribution disturbed by borehole and beds Ν Μ Ν **Current flow lines**

Potential distribution in the radial flow of electricity.

For a sphere the potential difference between electrode M and electrode N is as follows :

$$E_m - E_n = \sum_{AM}^{AN} \frac{I.R}{4.\pi.L^2} \cdot dL = \frac{I.R}{4.\pi.AM}$$
 Simplified to: $R = \frac{K_n \cdot \Delta E}{I}$

Kn is a proportionality factor depending on the electrode spacings

ELECTRICAL SURVEYS (ES)

Resistivity & conductivity Resistivity tools

B Borehole **Formation**

Laterolog tools

Logging with laterologs was introduced to cope with salty mud. These muds have a very high conductivity, and consequently the effect of the borehole on resistivity measurements is also very high. The Laterolog technique is therefore complementary to the induction logging method, designed for oil-base mud which has hardly any conductivity at all.

Pattern of current flow from a long cylindrical electrode located in a homogeneous medium

Resistivity tools

RESISTIVITY LOGGING TOOLS

- Electric sonde
- Induction log
- Laterolog
- Micro-resistivity tool

WHY SO MANY TOOLS ?

INVASION & BOREHOLE EFFECTS

where the highest accuracy is needed the resistivity is often disturbed most

Resistivity tools

Laterolog tools

Example of investigation depth of the Dual Laterolog

Resistivity & conductivity Resistivity tools

Micro-resistivity devices

Resistivity tools

Induction logging

Resistivity tools	Vertical & Horizontal Resolution		
Summary of the depth of investigation of the resistivity tools			
Depth of investigation resistivity tools	Vertical	Horizontal	
(Figures are rounded off in feet)	(ft)	(ft)	
SN (Short Normal)	1.5	1.5	
LN (Long Normal)	5	5	
Lateral	20	20	
ILD Induction deep (6FF40)	6	10	
ILD Induction (6FF27)	4	4	
ILM Induction medium	5	6	
LLD (Laterolog Deep)	2	10	
LLS (Laterolog Shallow)	2	2	
LL3 (Laterolog 3)	3	4	
LL7 (Laterolog 7)	3	4	
MLI (Microlog Inverse 1 x 1")	0.2	0.2	
MLN (Microlog Normal 2")	0.3	0.3	
MLL (Micro-Laterolog)	0.5	0.5	
MSFL (Micro-SFL)	1	0.5	

×/ ··· 1011 . . .

Resistivity & conductivity: Self Potential Sketch of a spontaneous potential measurement in a drill hole Potentiometer circuit

ORIGIN OF ELECTRICAL POTENTIALS

Electrokinetic potential or streaming potential: Effect when a solution of electrical resistivity and viscosity is forced through a capillary or porous medium.

Liquid-junction (or diffusion) potential: Due to the difference in mobility of various ions in solutions of different concentrations.

Shale (or Nernst) potential:

Two identical metal electrodes are immersed in different solution. then there will be a potential difference. Also known as the electrochemical, or staticself-potential

ORIGIN OF ELECTRICAL POTENTIALS (continue)

Mineralization potential:

Two different metal electrodes dipped in an aqueous concentration give a potential difference. This electrolytic contact potential and the staticself-potentialare associated with layers and mineral zones.

Erratic potentials:

- Metal corrosion (underground pipes, cables, etc.)
- Large-scale earth currents induced from the ionosphere, nuclear blasts, thunderstorms
- Currents of bio-electric origin, like plant roots

Static self-potential is temperature dependent

Resistivity & conductivity: Self Potential Combination of SP Components: Resistivities and Borehole Potential

$$E_{total} = I \cdot R_m + I \cdot R_{mc} + I \cdot R_{xo} + I \cdot R_t + I \cdot R_{sh}$$

- 1. the borehole filled with mud (Rm),
- 2. the mudcake (*Rmc*),
- 3. the invaded zone filled with mudfiltrate Rxo),
- 4. virgin zone filled with uncontaminated fluids Rt),
- 5. the surrounding shales (*Rsh*).

$$E_{total} = E_m + E_j + E_{kmc} + E_{ksh}$$

or

Currents created in the mud, invaded zone, shale and sandstone, by the Ej, Em and Ek

TUDelft

SHALE

ANDSTONE

SHALE

Borehole information on groundwater, formation water and minerals:

Electric currents; Propagated in rocks & minerals in three ways:

Electronic: The normal type of current flow in materials containing free electrons, like metals

Electrolytic: In an electrolyte the current is carried by ions at a comparatively slow rate

Dielectric:

Dielectric conduction takes place in poor conductors or insulators, which have very few or no free carriers.

The main applications for SP-measurements are:

- · Groundwater control
- Determination of formation water resistivity
- \cdot Evaluation of lithology, such as shale and coal
- Detection of permeable beds and their boundaries
- \cdot Determination of the shale content of a layer
- · Well to well correlation
- \cdot Determination of the environment of deposition

Clay/water determination

CEC by Waxman-Smits

$$C_0 = \frac{l}{F^*} \left(C_w + C_e \right)$$

If Co and Cw are measured in the laboratory, then F^* and Ce can be obtained through:

 $Ce = B \times Qv$

- F^* : formation factor corrected for shale
- *Co* : conductivity of 100% water-bearing reservoir, mmho/m
- *Cw* : conductivity of the formation water, mmho/m
- *Ce* : conductivity of the clay fraction, mmho/m
- B : the equivalent conductance of the counter-ions as a function of the solution conductivity

Shale volume calculation

TUDelft

Resistivity & conductivity: Self Potential Geological Information

SP/Resistivity log patterns:

- Below: sand rich depositions. Note the blocky appearance.
- Right the variety of sand/shale depositional environments

m 50

75

100

-lianite

-alauconite

