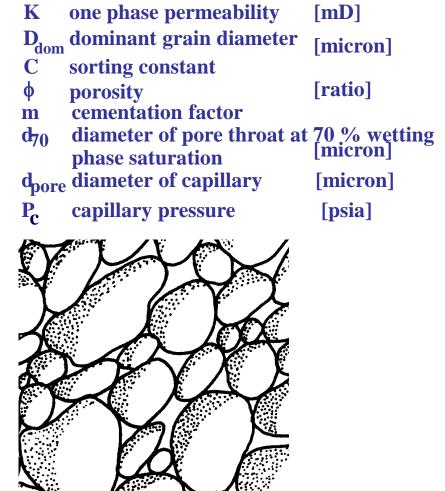

POROSITY

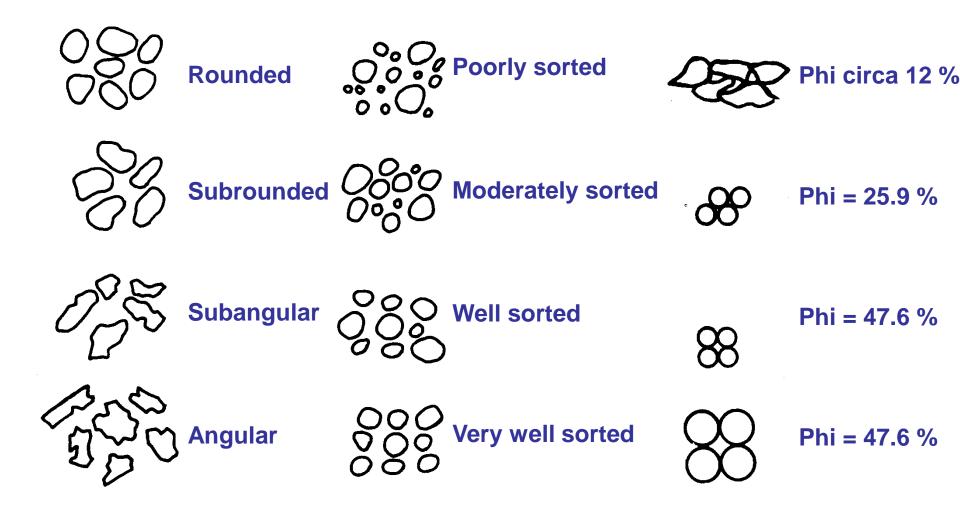
PERMEABILITY

CONDUCTIVITY

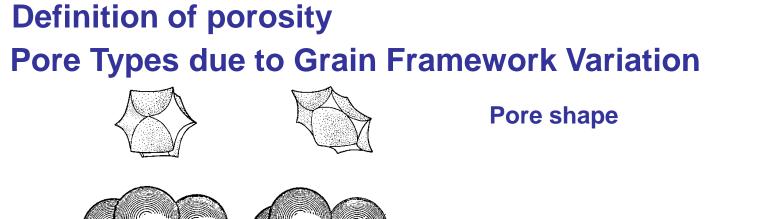
 V_p : pore volume

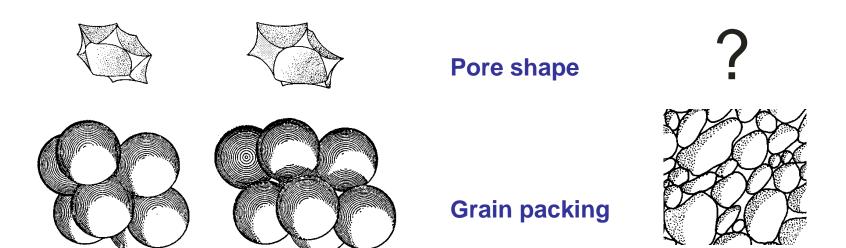

 V_b : bulk volume,

 V_{ma} : matrix volume



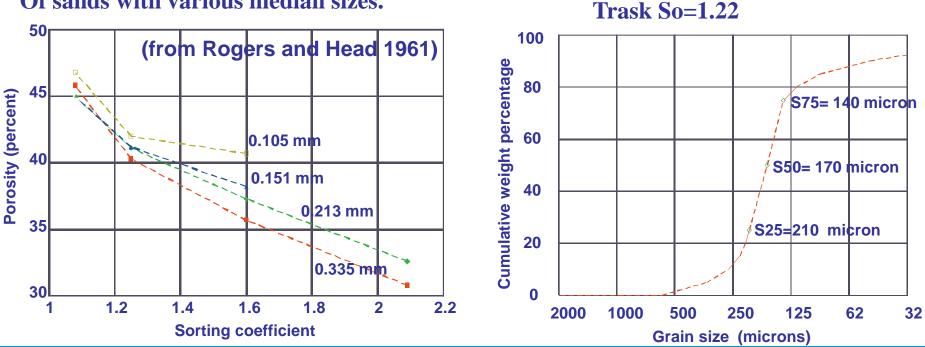
Parameters derived from the grain texture




Definition of porosity Grain Types and Grain Framework Variation

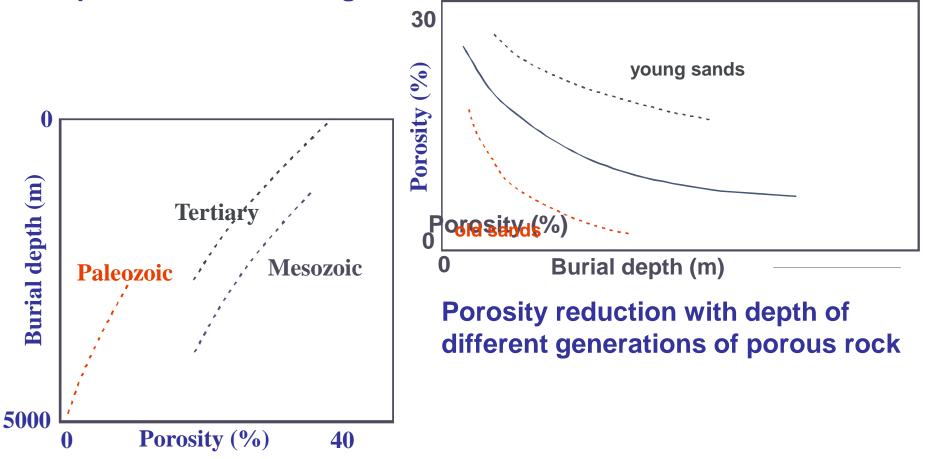
TUDelft

Grain packing

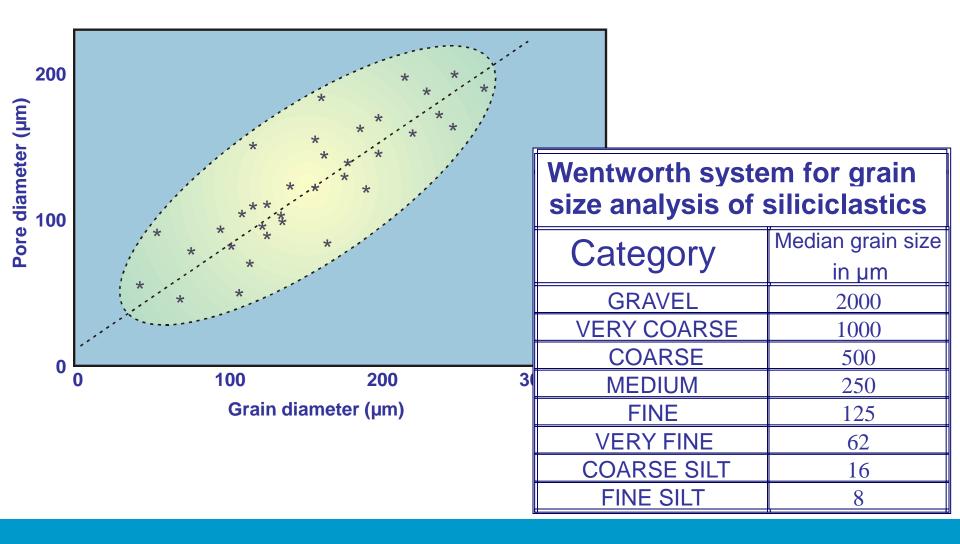

Porosity as a function of grain size uniformity

Relationship between porosity and sorting

Of sands with various median sizes.

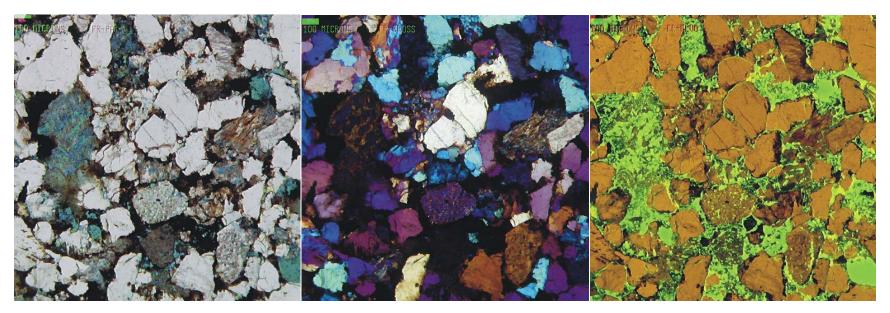

Grain size distribution with

Definition of porosity POROSITY VALUES AND SPATIAL CHARACTERISTICS


Pore space reduction during and after deposition

Porosity reduction as a function of depth.

Grainsize - pore size relation


POROSITY VALUES AND SPATIAL CHARACTERISTICS Consolidation and cementation

average porosities of several porous rock types			
unconsolidated sands	35 - 45 %		
more consolidated sandstone	20 - 35 %		
tight/well cemented sandstone	10 - 20 %		
limestone (e.g. Middle East)	5 - 20 %		
dolomite (e.g. Middle East)	5 - 20 %		
chalk (e.g. North Sea)	5 - 20 %		

Porosity types: Inter- and Intra-granular porosity

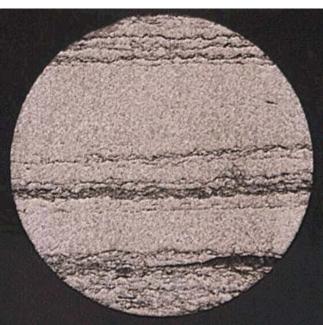
Polarization microscopy

Thin section of Felser sandstone: //-nicols, X-nicols and the fluorescing surface showing weathering (left), mineral content (middle) and pore space distribution (right).

Definition of Permeability

A flow of a fluid through a system consisting of porous media depends on two basic properties: 1.the fluid potential gradients

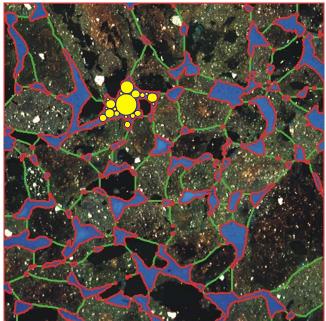
2.the resistance to the flow of that fluid along the pathway traversed.

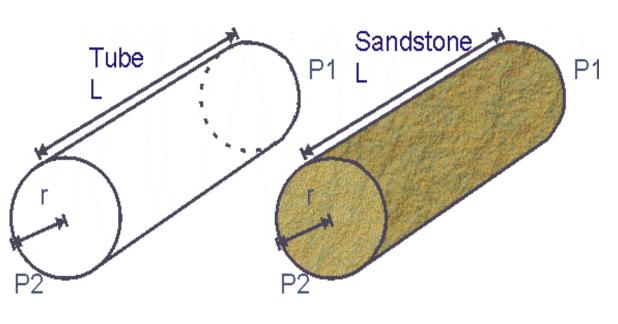

Porous rock can have two types of permeability:
1. primary permeability, or the matrix permeability created during deposition and lithification
2. secondary permeability, created during alteration by compaction, fracturing, solution, and cementation.

Definition of Permeability

Permeability can be derived from:

- Lab experiments: Poiseuille, Darcy Dijon.
- Texture analyses: Porosity and grain size distribution.
 - Spatial relation: Carman-Kozeny.
 - Empirical relation: van Baaren.
- Lab measurements transferred to logs.


Definition of Permeability Poiseuille, Darcy – Dijon

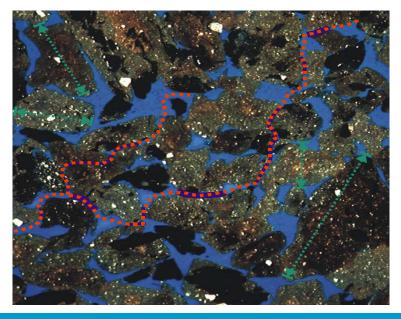

μ

FLOW THROUGH A TUBE (Poiseuille)

$$Q = \frac{\pi \cdot r^4 \cdot \Delta p}{8 \cdot \mu \cdot L}$$

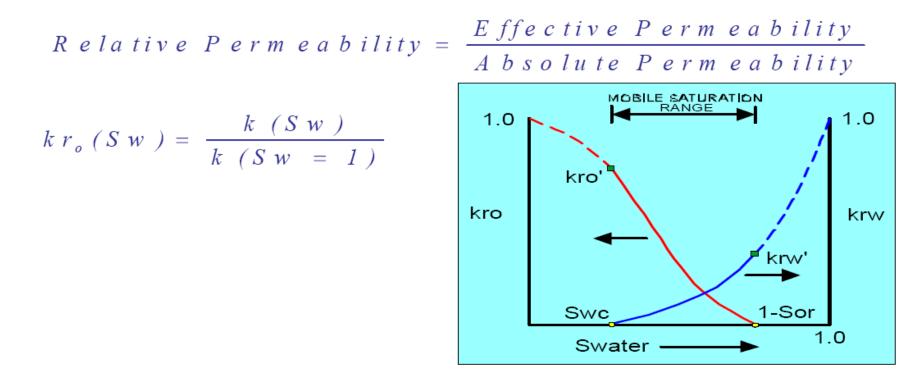
- : volumetric velocity in cm³/s;
- r : radius tube in cm;
- ΔP : pressure difference in dyne/cm²;
 - : dynamic viscosity in poise (gram/sec.cm);
 - : length tube in cm.

Definition of Permeability Poiseuille, Darcy – Dijon FLOW THROUGH A SAND BED (Darcy)


$$Q = \frac{-k(h2-h1)}{l} \begin{bmatrix} 0\\l\\h_2\\k \end{bmatrix}$$

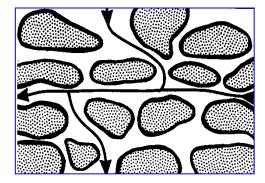
- : volumetric fluid velocity in L³.t⁻¹
- : thickness of the sand L.
- : the elevation above a reference level h_1 of water in manometers terminated above and below a vertical column of sand and L
 - : a proportionality factor also in L³.t⁻¹, which contains the properties of the fluid and the porous medium.

FLOW THROUGH A CORE (Darcy - Dijon, 1856)


 $\frac{k \cdot A \cdot \Delta P}{\eta \cdot L}$

- : volumetric fluid velocity in cm³.s⁻¹ Q A
- : surface area perpendicular to flow direction in cm²
- ΔP : pressure difference in atm.
- : dynamic viscosity of the fluid in cpoise (kg/sec.cm) η
- L : length in cm
- : permeability in Darcy $(1 \text{ D}=0.986*10^{-8} \text{ cm}^2)$ k

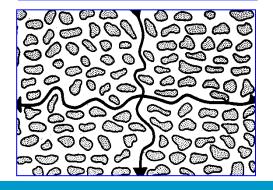
Definition of Permeability Poiseuille, Darcy – Dijon


Example: One phase or liquid permeability is 100 mD. Kro(Swc)=70 md/ 100 mD=0.7 Frequently measured with increasing water saturation - Imbibition

oil - water relative permeability

Definition of Permeability

Relations to texture properties: Shape and size of sand grains

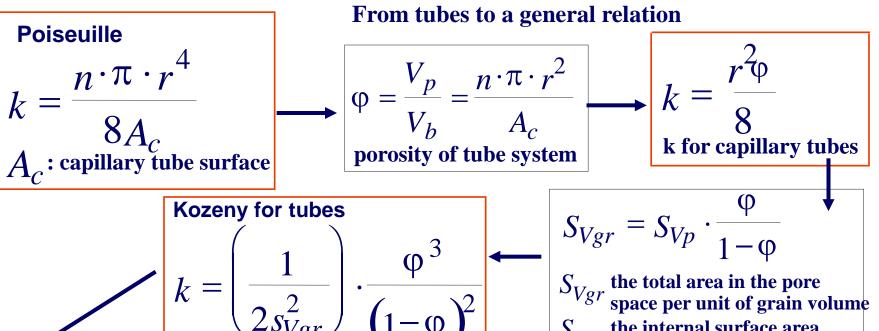


Grains elongated, large, flat and regularly arranged:

- horizontal permeability high,
- vertical permeability medium-to-large

Grains large and uniformly: rounded:

• permeability high in all directions


Grains small, irregular shaped:permeability quickly reduces to very low values

Definition of Permeability: Spatial relation: Carman-Kozeny

Kozeny for grains

Texture analyses: Porosity and grain size distribution.

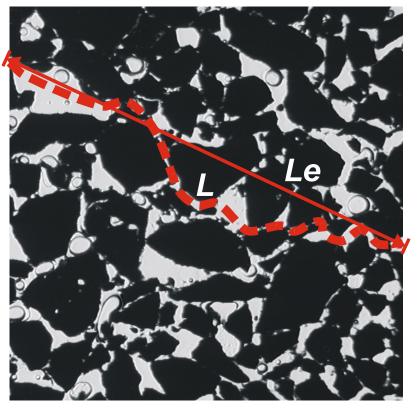
 $k = \left(\frac{1}{2\tau \cdot s_{Vgr}^2}\right) \cdot \frac{\varphi^3}{(1-\varphi)^2} - \frac{\varphi^3}{(1-\varphi)^2}$

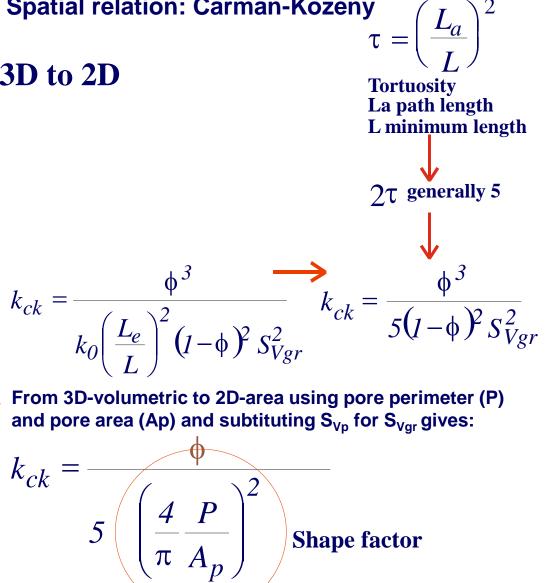
 S_{Vgr} the total area in the pore space per unit of grain volume S_{Vp} the internal surface area per unit pore volume

 2τ generally 5

AES3520: Introduction to the fundamentals of petrophysics and log evaluation

 $\tau = \left(\frac{L_a}{L_a}\right)^2$


La path length


L minimum length

Tortuosity

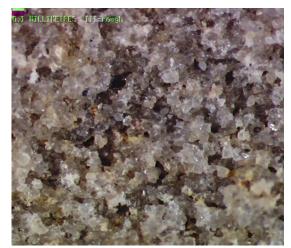
Definition of Permeability: Spatial relation: Carman-Kozeny

Permeability transition from 3D to 2D

Definition of Permeability

Comparison formation factors, grain-size, lithology, and permeability					
Lithology	F	grainsize	Permeability k		
			Darcy		
		mm			
gravel with sand	7.5	3.00	large		
coarse sand with gravel	6	0.70	200		
coarse sand	5	0.20	50		
medium sand	4	0.05	25		
fine sand	3.5	0.01	10		

Definition of Permeability - Empirical relation: van Baaren for K_{LIQUID}.


van Baaren relation (1979)

$$k = 10.D_{dom}^2 \cdot C^{-3.64} \cdot \varphi^{m+3.64}$$

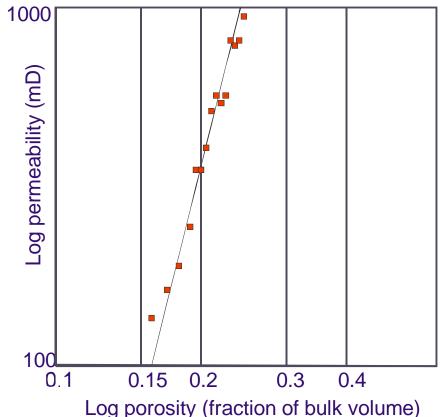
: one-phase permeability (mD)

D
dom
C:dominant grainsize (micron) from cutting inspection with a microscope.C::a constant derived from the sorting observed with a microscopeφ:porosity, fraction of bulk volume. Derived from well log evaluation.m:cementation factor. Estimated by scratching of rock samples

 D_{dom} , C, rom cuttings, cores and sidewall samples, m guesed or from samples

Relation of cementation factor (m) and sand consolidation

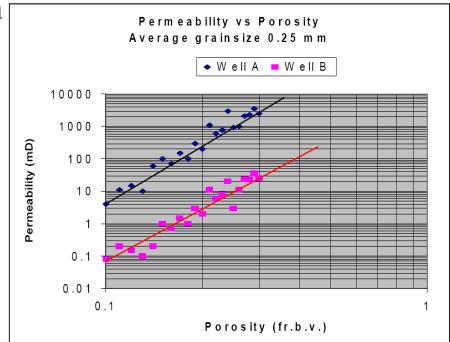
Consolidation		Cementation
	factor	
	atmospheric	in-situ ³
unconsolidated sand	1.4	1.6
unconsolidated to friable sand	1.5	1.7
friable sandstone	1.6	1.8
hard to friable sandstone	1.7	1.9
hard sandstone	1.8	2.0
very hard sandstone	2.0	2.2


Relation of sorting, C, to the spread in dominant grain size D_{dom} .				
Sorting	С	D _{dom.max} ./ D _{dom.min} .		
extremely well to very well sorted	0.70	2.5		
very well to well sorted	0.77			
well sorted	0.84	3.5		
well to moderately sorted	0.87			
moderately sorted	0.91	8		
moderately to poorly sorted	0.95			
poorly sorted	1.00			

Definition of Permeability Lab measurements transferred to logs.

- **Empirical permeability relations**
- **Permeability from logs**
- Depending on the environment of deposition core permeabilities can often be correlated with the core porosities 1000

$$k = 10^{\left(C_1 + C_2 \cdot \log(\varphi)\right)}$$
$$k = 10^{\left(C_1 + C_2 \cdot \varphi\right)}$$



Definition of Permeability Lab measurements transferred to logs.

Example.

Sandstone properties in well A and well B:

- •Average grainsize 0.25 mm
- •Well sorted (C=0.84)
- •Friable sandstone, m=1.8

K in well B about factor 100 lower than K in well A. Caused by illitisation in the pore throats.

TUDelft

Definition of Permeability from logs: Overview (1)

1. K = F(
$$\phi$$
) Plugs & logs K = 10^C₁ + C₂ log(ϕ)
2. K = F(f, Swirr) Lab tests K = $\left[\frac{100 \ \phi^2 \ (1-Swirr)}{Swirr}\right]^2$

3. K = F(f, grainsize) $K = 10D_{dom}^2 C^{-3.6} \phi^{m+3.6}$

- cuttings description Texture analysis

- clay indicators from logs density-neutron, GR, SP etc.
- 4. K = F(acoustic parameters)
 - compressional velocity (ϕ)
 - amplitudes (Lebreton, 1978)
 - stonely wave attenuation (Staal, Robinson, 1977)

NOT DISCUSSED IN THIS COURSE !

Definition of Permeability from logs: Overview (2)

- 5. Mudcake development: No K, no mudcake
- 6. Spontaneous potential: No K, no SP deflection
- 7. RFT pre-tests
- 8. DST, production tests kh (mD.m) from build-up Reservoir permeability
- 9. Nuclear Magnetic Resonance Log
- 10. Leverett J
- 11. Multi-variate analysis

ITEM 5 - 11 ARE NOT DISCUSSED IN THIS COURSE !

EXERCISES POROSITY & PERMEABILITY

In Scheveningen a new giant sea aquarium is placed on a foot of Bentheimer sandstone. This porous sandstone is used to trap water during leakage. Unfortunately the aquarium burst and lost much water in de sandstone. The centre part is fully saturated with water and the question is: will the floor of the Scheveningen pier give away or not?

We like to know: what is the porosity of the sandstone?

CORE DATA:

- Dry core weight: 423 gram,
- Density of the water: 1.05 g.cm⁻³
- Saturated weight of the sandstone: 461 gram.
- The sample dimensions are: 110 mm length and 38 mm diameter.

BABYLON EXERCISE

In Babylon American, Chinese, German, Dutch and African reservoir and hydrological engineers have to cooperate in the water and energy supply for the building of a big tower.

Both absolute units and hybrid units are used to define permeability. In the end a conversion table is made to compare values.

Fill the table with cgs-units (centimeter, gram, seconds), SI-units (m,kg,s), Darcy units, oilfield units and hydrological units.

			Absolute units			Hybrid units	
Parameter	Symbol	Dimension	SI	cgs	hydrology	Darcy	oilfield
Length	I	L	m	cm			ft
Mass	m	М	kg	g			lb
Time	t	Т					hr
Velocity	v	L/T					ft/sec
Rate	Q	L ³ /T					stb/d (liquid) Mscf/d (gas)
Pressure	Р	(ML/T ²)/L ²	N/m ²	dyne/cm		atm	psia
Density		M/L ³					lb/cu.ft
Viscosity	<i>~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M/LT				ср	ср
Permeability	k	L ²				Darcy	mD (10 ⁻¹⁵ m ²)

In Turkey a new small oil reservoir was detected in a slowly dipping and fractured layer. The part that reached the surface contained an aquifer filled with water from the mountains. Both the governement and the oil company wanted to know the reservoir permeabilities.

The government uses the conventional system (D) and the reservoir engineers use the units from the American oil industry (mD). Calculate both values with different units.

DATA:

Lab values:

- Cylindrical core: Length 100 mm, diameter 40 mm.
- Fluid viscosity: 2.5 cp
- Flow rate: 0.021 l/min
- Pressure drop: 3.4 atm

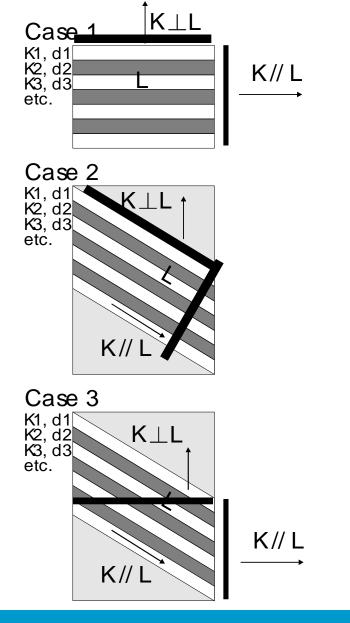
Permeability calculations with spatial information

Good old Kozeny had problem with some ideas about grain surfaces. He did have a uniform sandstone with a permeability of 480 mD and a porosity of 17 %.

He likes to know:

- The average pore throat radius
- The surface specific areas of the pores SVp and grains SVgr.

He assumed that the flow channels were tubes. Use the equations 4.15 and 4.16 of the TA3500 lecture notes to solve this problem (See Blackboard).



Upscaling or averaging permeabilities

Construct the total or average permeability of the combined layers in the three given situations.

Help: Compare the electrical resistivity of a body with the fluid resistivity when zones in a body do have different permeabilities or resistivities:

$$\begin{split} R_{tot} &= R_1 + R_2 + \ldots + R_n & \text{Parallel} \\ \frac{1}{R_{tot}} &= \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n} & \text{Series} \end{split}$$

