SIMPLE

Exercise simple: How to square log readings and determination of net thickness.

Objectives:

- Getting acquainted with the relations between FDC-CNL logs, porosity and shaliness of sandstone and shales.
- In this case porosity determination is an important objective. A comparable evaluation can be made for:
 - . water-influx tests from roof rock of coal seams and ore bodies.
 - . determination of the vertical lithology in fresh water reservoirs.

Well SIMPLE-6

Reservoir characteristics:

- The formation is an unconsolidated sandstone.
- Matrix densities measured on the core: approximately 2.65 g/cc.
- Formation temperature: 58°C.
- Qv-values measured on the core are approx. 0.04 meq/ml PV.
- Formation water salinity = 85000 ppm NaCl.
- m = 1.6

Mud characteristics

- Rmf = 0.055 Ohm.m at 58° C, thus 73000 ppm
- The RLLd does not have to be corrected for borehole and invasion effects.

SIMPLE Questions:

- Finish table 1 down to 1265 m (square Density and Neutron only).
- Plot the layers in a Density-Neutron cross plot.
- Determine fluid in the pores (Gas/Oil/Water).
- Calculate for the gas cap:
 - Net sand thickness,
 - Mean porosity,
 - Mean Sh,
 - Sh-column.
- Determine for each layer in interval 1250 -1265, using FDC-CNL plot:
 - Shaliness,
 - Total and effective porosity (using wet shale density = 2.55 gr/cc, shale Neutron por = 36 p.u. (porosity units), dry shale density = 2.65 gr/cc.)

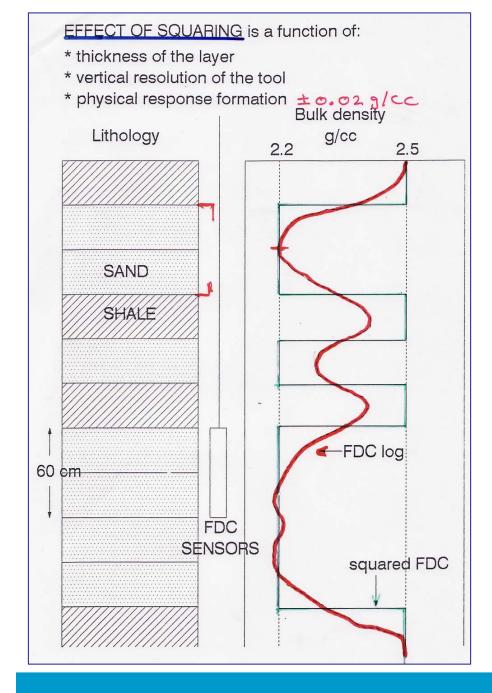
Table 1: Squared and multiplexed log-values

Top	Depth	Density	Neutron	Rlld	θ total	Sw	Fluid
Layer	(m)	(g/cc)	(p.u.)	(ohm.m)	(%)		type
1*	1240.2		27	6			
2	1240.9		24	6			
3	1241.4		24	6			
4	1242		7	90			
5	1242.5		7	140			
6	1243.3		6	55			
7	1244		8	200			
8	1244.4		6	60			
9	1245.1		29	60			
10	1245.9 1247.5		29	270			

^{*} Layer 1 refers to the interval from 1240.2 - 1240.9 m. The depth in this column indicates the top of the layer.

Table 2: Gas net count results

Interval	thickness "h"	ρ	h * ρ	Shc	h * ρ * Shc
(m)	(m)		(m)		(m)


Mean porosity	:
Porosity column	:
Mean Shc	:
h.c. column	:

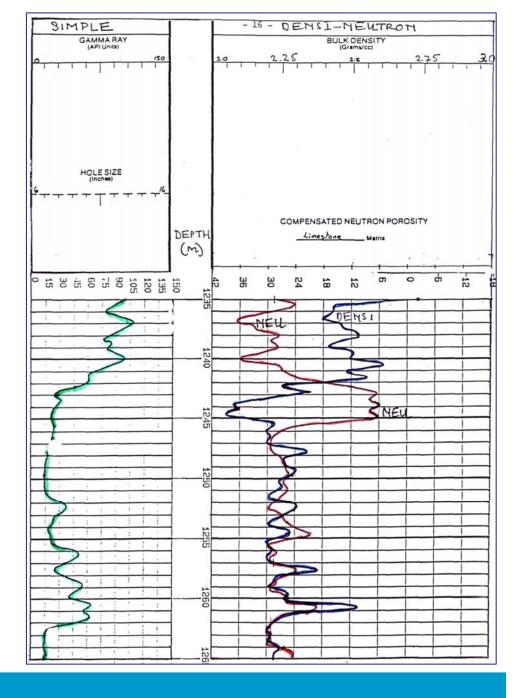


Table 3: FDC-CNL porosity and Vsh

Layer	Depth	Density	Neutron	Vsh	φ total	φ eff
	(m)	(g/cc)	(p.u.)			
11	1247.5					
12						
13						
14						
15						
16						
17						
18						
19						
20						

FDC-CNL Cross Plot

Figure 2: FDC-CNL plot, limestone compensated

BULK

2.6 d

2.7

2.8

2.9

3.0

LANGBEINITE

POLYHALITE

20

 $(\phi_{CNL})_{cor}$ NEUTRON POROSITY INDEX, p. u

(APPARENT LIMESTONE POROSITY)

30

© Schlumberger

DENSITY

-15

40

ANSWERS

Squaring logging curves

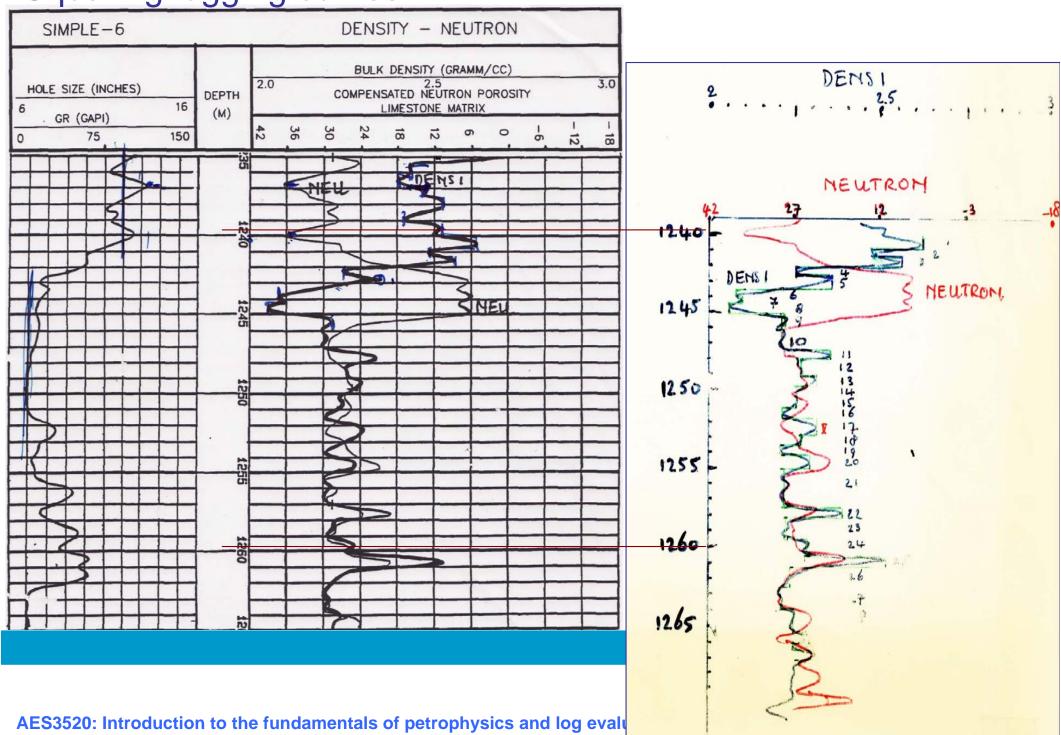


Table 1

Squared	and multi	plexed lo	g values				
Layer	Depth (m)	Densi g/cc	Neutron p.u.	R11d Ohmm	Sonic msec/ft	PORt	Sw
1 2 3 4 5 6 7 8 9	1240.2 1240.9 1241.4 1242 1242.5 1243.3 1244 1244.4 1245.1 1245.9	2.62 2.48 2.56 2.25 2.36 2.08 2.1 2.05 2.23 2.21	27 24 24 7 7 6 8 6 29 29	6 6 90 140 55 200 60 270	87 87 87 92 58 101 101 101 94 97	.02 .106 .058 .191 .15 .248 .25 .26	2.05 shale .54 shale .87 shale .087 gas .084 gas .09 gas .047 gas .083 gas .084 oil .038 oil

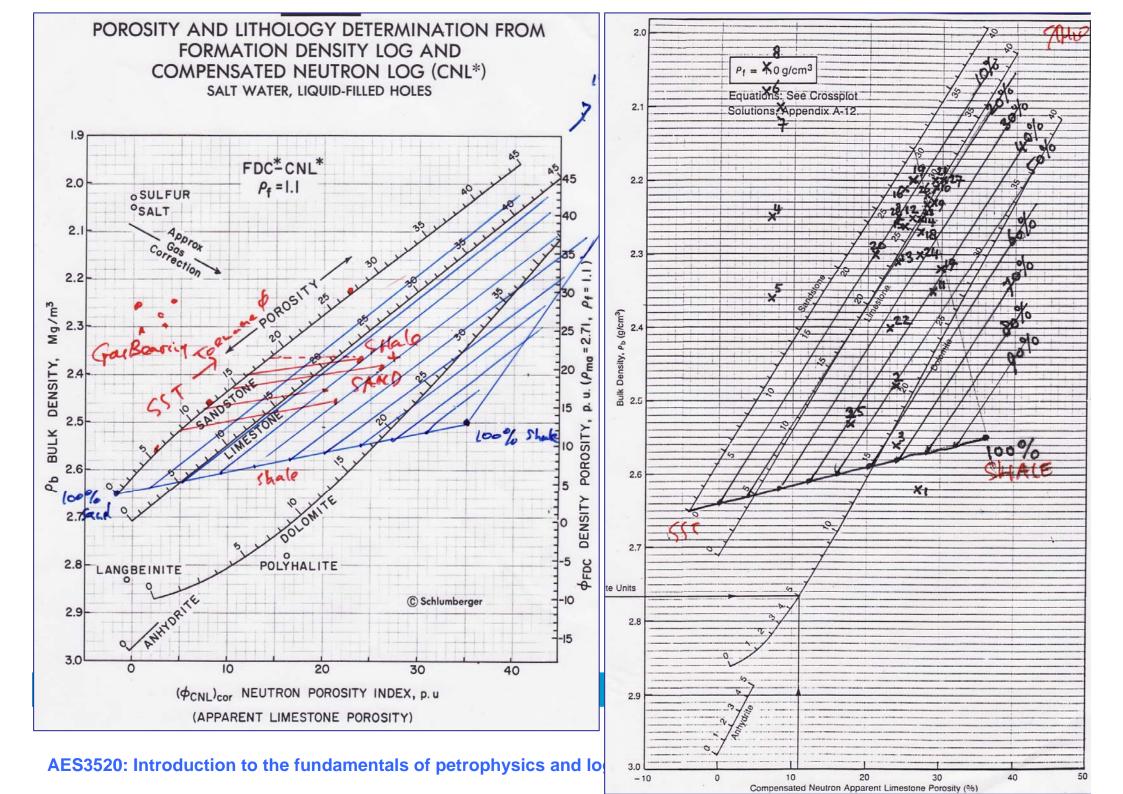
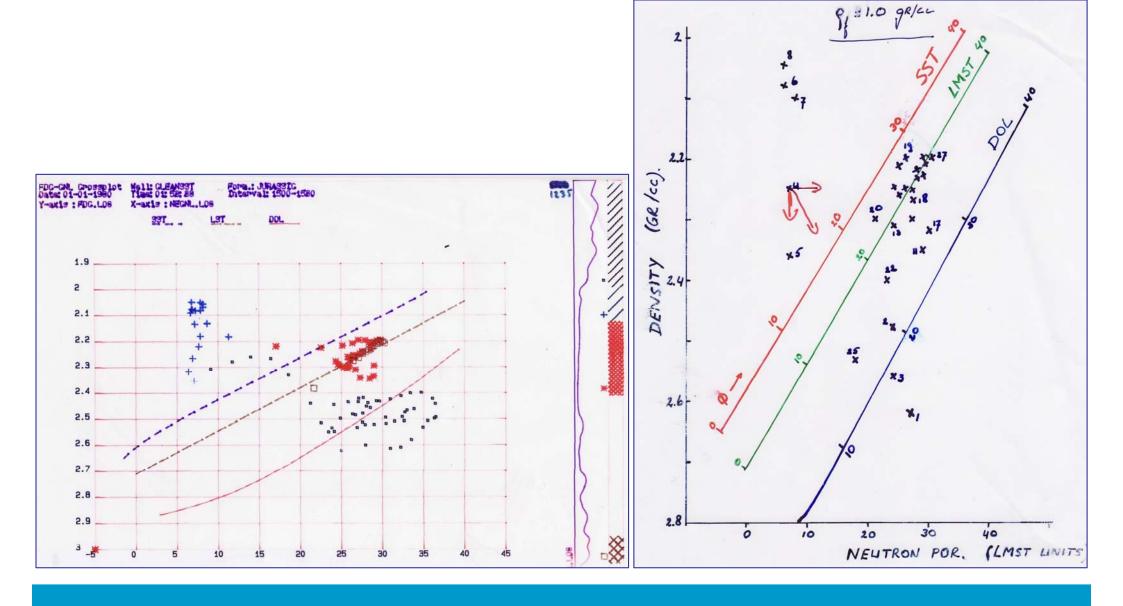


Table 2

Net sand count example

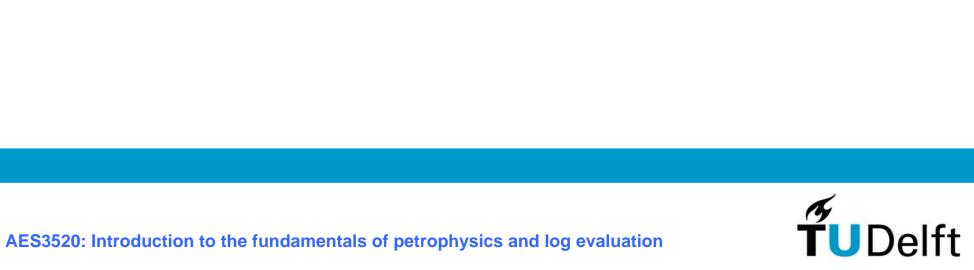
Interval (m)	Thickness h (m)	POR fr.b.v.	POR.h (m)	Shc fr.p.v.	POR.h.Shc (m)
1242-1242.5 1242.5-1243 1243 -1244 1244 -1244.4 1244.4-1245.1	0.5 0.5 1 0.4 0.7	.191 .15 .248 .25 .26	.0955 .075 .248 .1	.913 .916 .91 .953 .917	0.0872 0.0687 0.2257 0.0953 0.1669
	3.1		0.7005		0.6438

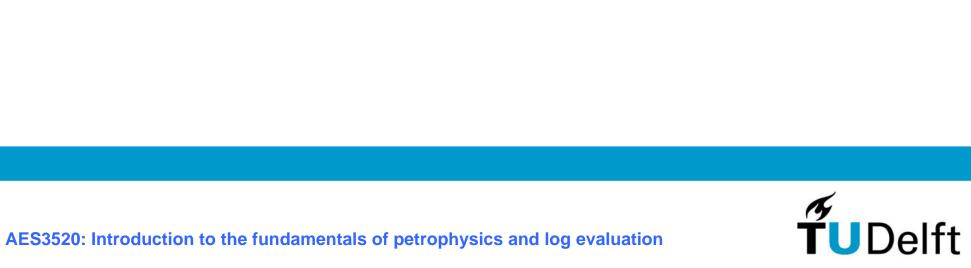
Mean POR = Sum (POR.h)/h = 0.7005/3.1 = 0.226


Porosity column = 0.70 m

Mean Shc = Sum (POR.h.Shc)/Sum (POR.h) = 0.6438/0.7005 = 0.92

H.C. column = 0.64 m


Simple: Example by computer (below) and by hand (right)



Well Si	mple-6		Table 3	Table 3				
Shale v	olume, eff	ective and	d total por	osity from	Densi-Neu	tron crossplot		
Layer	Depth (m)	Densi g/cc	Neutron p.u.	Vsh fr.b.v.	PORtot fr.p.v.	POReff fr.p.v.		
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	1247.5 1248 1249 1250.5 1251.5 1252.8 1252.8 1253.5 1254.2 1255 1257.5 1258 1259.5 1260.5 1261 1262.5	2.35 2.26 2.31 2.25 2.26 2.21 2.32 2.27 2.2 2.3 2.2 2.4 2.23 2.53 2.53 2.22 2.2	29 26 24 27 25 25 30 27 26 21 29 23 28 27 18 28 30	.41 .17 .22 .20 .16 .07 .39 .23 .08 .10 .16 .33 .20 .28 .42 .17	.18 .243 .205 .243 .238 .269 .20 .23 .275 .21 .275 .151 .257 .21	.153 .232 .19 .229 .225 .263 .173 .216 .27 .204 .262 .13 .242 .192 .048 .25 .261		

