Exercise Saturnus: Log

GAMMA RAY LOG	LATEROLOG 7	FORMATION DENSITY LOG	INDUCTION LOG	MLL	CAL (MLL)	SONIC
4PI UNITS	RESISTIVITY, OHM M (LO& SCALE) 0.2 L0 10 100 100 RESISTIVITY, OHM M (LIN. SCALE) 0 20 40	FORMATION BULK DENSITY, 644 2.25 2.50 2.75 CALIPER CORRECTION 644 6 (such) 11	RESISTIVITY ONL M COMDUCTIVITY MUMO/M 0 3N 20 0 0 3N 20 0 0 0 3N 20 0 0 0 3N 2000 0 0 0 AMPL. SN 4 6000 40000	0.1 0.1 2.0	INCHES	BONIC TRANSIT TIBI (microsec / H 90 B0
				March Mar		and the second of the for the second second with the second of the second of the second s

AES3520: Introduction to the fundamentals of p

Exercise Saturnus: Log headers. Resolutions and scales

″UDelft

Exercise Saturnus: Log headers. Resolutions and scales

Exercise Saturnus: Vertical aligning

Exercise Saturnus: Help table 1 & 2

Exercise Saturnus: Help table 1 & 2

 $S_w^n = R_w \cdot \phi^{-m} \cdot R_t^{-1}$

AES3520: Introduction to the fundamental

Questions:

1) Porosity calibration.

Using the core data given above, construct the lines relating bulk density and porosity in the gas bearing and in the water bearing zones (Fig. 1).

2) Water bearing section.

In table 1, the Induction log readings of several water bearing intervals are listed.

Note: The Induction log is usually less suitable than the Laterolog in salt saturated mud due to the strong borehole effect when Rt >> Rm. Here, the tool was set at zero in the borehole opposite a non conductive formation. Thus the borehole effect is cancelled out, at least for a particular borehole size. Small variations in the borehole size may be neglected, especially since the contrast between Rt and Rm is small. Furthermore the resistivities opposite the water bearing layers are too low to be read accurately from the Laterolog. The conductivity curve from the Induction log was used instead to determine the resistivities.

Questions

- Read the formation bulk densities for the intervals selected in table 1. Translate these into porosity using figure 1.
- Plot resistivity versus bulk density ρ_b in Fig. 2, assuming m = 2. Add a porosity scale to the ρ_b axis. Then, determine the value of Rw.
- Read the Microlaterolog resistivities. Compare these values with those given by the Induction log. Which conclusion can you draw?
- Above we assumed m = 2. Considering now the invaded zone and the corresponding resistivities (RMLL and Rmf); calculate for each interval the value of m. What average m do you obtain?
- Would a value of m different from 2 appreciably affect the final result of the evaluation?

Table 1: Water bearing section.

Bed	Interval (m)	D _b	С	R	φ _{fdc}	R _{MLL}	m
N/	Depth GR - FDC		mmho/m	ohm.m	%	ohm.m	
13	2433.2 - 2434.8		2500				
14	2440.3 - 2441.8		4000				
15	2449.3 - 2450.8		3600				
16	2451.2 - 2452.5		2300				
17	2448.4 - 2460.0		3200				
18	2465.8 - 2467.2		2000				
19	2473.0 - 2474.0		4700				
20	2474.0 - 2476.3		2600				
21	2477.4 - 2478.0		4700				
22	2479.0 - 2480.0		3100				

Exercise Saturnus Figure 2

AES3520: Introduction to the fundamentals of petrophys

3) Gas bearing section

Now resistivities can be read accurately from the Laterolog on its logarithmic scale.

Questions.

- Read the resistivity of beds 1 to 12 (Table 2).
- Convert bulk densities into porosity values.
- Plot resistivity versus porosity on the m = 2 grid paper (Figure 3).
- Construct the iso-saturation lines (Sw = 90%, 80%, 70%, etc.).
- Determine graphically the water saturation of each interval and complete Table 2.

Table 2: Gas bearing section.

Bed	Interval (m)	$ ho_b$	R _{LL}	φ _{FDC}	$\mathbf{S}_{\mathbf{w}}$
N /			ohm.m	%	
1	2366.0-2367.0	2.47			
2	2371.6-2372.2	2.43			
3	2383.0-2384.1	2.45			
4	2385.4-2386.9	2.42			
5	2392.5-2394.2	2.51			
6	2398.6-2399.8	2.33			
7	2403.0-2405.5	2.38			
8	2413.0-2415.5	2.40			
9	2417.0-2418.5	2.42			
10	2420.0-2421.5	2.40			
11	2425.8-2427.5	2.38			
12	2429.1-2430.0	2.39			

Exercise Saturnus Figure 3

AES3520: Introduction to the fundamentals of petrophys

figure 3

$$\label{eq:Ro} \begin{split} &\mathsf{Ro}/\mathsf{Rw}=\varphi^{\text{-m}},\\ &\mathsf{Ro}=0.14~\Omega\text{m},~\text{and},\\ &\varphi=0.30 \end{split}$$

Then: For m = 2 then Rw = 0.013 Ω m For m = 1.7 then Rw = 0.018 Ω m

AES3520: Introduction to the fundamentals of petrophysics

Exercise Saturnus: Table 1

WATER BEARING SECTION

(One possible programme for the calculation of m is given on the Rw=0,013 following page)

		V					
ed	Interval (m) (depth GR-FDC)	.Po	CL mmhos/m	R t ohm.m.	Ø _{ĘDĊ}	R _{MLL} ohm.m	m Rw=0.01
3	2433.2-2434.8	2.425	2500	0.40	18.0	0.45	1.95
4	2440.3-2441.8	2.35	4000	0.25	21.7	0.3.	1.92
5	2449.3-2450.8	2.35	3600	0.28	21.7	0.35	1.96
6	2451.2-2452.5	2.40	2300	0.43	19.25	0.50	2.09
7	2458.4-2460.0	2.37	3200	0.31	20.7	0.31	1.90
8	2465.8-2467.2	2.41	2000	0.50	18.7	0.50	2.05
9	2473.0-2474.0	2.31	4700	0.21	23.9	0.25	1.89
0	2474.0-2476.3	2.37	2600	0.38	20.7	0.4	2.01
1	2477.4-2478.0	2.28	4700	0.21	25.3	0.23	1.97
2	2479.0-2480.0	2.36	3100	0.32	21.3	0.45	2.10

d-m

Lo -

Rw

Real > m=1.69=1.20

AES3520: Intro

Combined Archie I & II to calculate Sw

AES3520: Introduction to the fundamentals of petrophysics a

Exercise Saturnus: Table 2

GAS BEARING SECTION

Procedure for the construction of isosaturation lines is given above.

Be N	ed Interval (m)	в	R _{LL} ohm.m	ø _{FDC} %	S V K
1	2366.0-2367.0	2.47	5.4	13.8	35
2	2371.6-2372.2	2.43	5.0	15.7	32
3	2383.0-2384.1	2.45	4.2	14.7	37
. 4	2385.4-2386.9	2.42	2.9	16.0	• 40
5	2392.5-2394.2	2.51	3.0	12.0	- 53
6	2398.6-2399.8	2.33	2.4	20.1	36
7	2403.0-2405.5	2.38	· 2.1	17.8	44
8	2413.0-2415.5	2.40	2.0	17.0	47
9	2417.0-2418.5	2.42	4.3	16.0	34
10	2420.0-2421.5	2.40	2.2	17.0	44
11	2425.8-2427.5	2.38	1.3	17.8	55
12	2429.1-2430.0	2.39	1.1	17.4	60
				Construction of the second party of the second party of the second	An annual sector and an and an annual sector of the sector