
H7 (Fitts) 

1) 165 m2 /day 

2) 550 m /day 

3) −0.0063 ft/day (0.19 cm/day). That N < 0 means that the leakage out the base of the aquifer 

exceeds the recharge in the top by this amount.  

4) 95 ft2 /day (8.8 m2 /day) 

5) Superposition is when solutions of a linear differential equation are added to each other, and 

the resulting solution is also a solution. This applies to linear differential equations. Many 

examples of superposition are described in the chapter, including a well in a uniform flow and 

wells with image wells near linear and circular boundaries. 

6) There is a range of possible answers here. One possibility is to assume that the well is located 

5 m ahead of the leading edge of the plume. Assuming that the origin of an x, y coordinate 

system is at the well, like in Figure 7.11, a point at the upper limit of the capture zone would 

have approximate coordinates of (−15.4, 4.5). The angle Θ = arctan(y/x) = 2.86 radians. Use 

Eq. 7.28 to solve for Q (m, day units):  1.7 m3 /day. As a check, we could examine the ultimate 

width of this capture zone far upstream from the well, using Eq. 7.30: ±5.1 m. This seems 

reasonable, since the y coordinates of the capture zone at the plume are ±4.5. 

7) The solution neglects recharge and leakage – all flow is from lateral flow. Close to the well 

this may be reasonable, but on a larger scale recharge and leakage contribute a significant 

amount of flow and should not be ignored. The capture zone area is finite when there is 

finite recharge/leakage into the aquifer. Without accounting for recharge/leakage the area and 

extent of the capture zone is infinite. 

8) A) Vertical thickness is 30 m (domain top elevation - bottom elevation). K = 1 m/day, 

T = 30 m2 /day. 

b) qx ≃ 0.0121 m/day. 

c) ∂h/∂x ≃ −0.0121. 

d) 0.0121 m/day. 

e)  100.6 m3 /day 

f) The well Q is 100 m3 /day, which essentially the same as computed in the previous step, 

allowing for inaccuracy in measuring the width of the capture zone. 

9) The sketch map would look like Figure 7.15 with a real well and an image well with opposite 

discharge. The model equation would be  h^2 = Q/(πK) * ln(r1/r2) + C, where Q is the well 

discharge, r1 is the distance from the real well and r2 is the distance from the image well. 

10) 1980 ft /day (184 m2 /day) 

11) A) 0.273 m2 /day 

b) 0.49 m3 /day 

d) 0.0092 m/day 

e) 73,600 N/m2 

12) 199.6 m 

13) −3.7 m 

14) C = 0.28 ft (8.5 cm), hd = −2.2 ft (-67 cm). 



15) Only cases (b) and (d) are appropriate for flow net analysis. 

16) 160 m3 /day 

17) 120 m3 /day 

18) A) Most of the head loss is in the clayey till, because its conductivity is about 67 times lower 

than that of the fine sand. 

b) 230 ft3 /day (6.5 m3 /day) 

c) 0.09 ft/day (2.7 cm/day) 

d) Assumptions made: (1) the clayey till is homogeneous with isotropic K, (2) the other 

materials are also homogeneous and isotropic with the conductivities listed, (3) flow is 

two-dimensional in the vertical plane. Item (1) is probably the most important source of 

uncertainty. To reduce the uncertainty associated with (1), you could conduct K tests on 

the clayey till compacted as it will be when constructed. Horizontal K values would be 

most appropriate for this analysis since flow is mostly horizontal. To reduce uncertainty 

associated with (2), K tests of these materials could be made. To reduce uncertainty 

associated with (3), investigate hydrogeologic conditions at the two abutments at the 

ends of the dam, and check the continuity of conditions along the dam. 

19) A) Q = 0.67 m3 /day. 

b) Q = 1.85 m3 /day. 

c) Q = 0.84 m3 /day. 

d) With the model of part (c), the flow originates closer to the dam in the reservoir and 

exits closer to the dam in the tailwater, because there is little resistance to vertical flow. 

The model of part (b) has flow originating and exiting farther from the dam because the 

vertical resistance to flow exceeds the horizontal resistance. 

e) With the geometry of this situation, there is more horizontal than vertical flow. Thus, 

changing the horizontal K has a greater impact on the Q than changing the vertical K 

does. 

20) xd = AK/2N =  (0.4*1.5)/(2*0.007) = 42.9 ft (13.1 m). 

21) A = -1.0, h^2 = -x+400. 

22) A) K = 2.88 m/day. 

b) h0 =√(152.8) = 12.4 m. 

23) This depends on how the model was constructed and in particular what far-field boundary 

conditions were used. I created a model with head-specified boundaries far away from the area 

of the wells, and set the heads at these to 12.36 m, the computed far-field head. The model 

matches the solution computed by hand very closely. 

  



H9 (Fitts) 

1) The derivative dy/dx at point a is the slope of the tangent line (dotted) at that point. A finite 

difference approximation of the derivative at a is the slope of a line connecting two points on 

the curve near a. The slope ∆y/∆x of the line from b to c (dashed) is a finite difference 

approximation of the derivative at a. A derivative is a measure at a point, but a finite difference 

is a measure over a finite interval. 

2) If there is no source/sink in the cell, Qs = 0 and the equation becomes  

h= 1/6*[h(x+) + h(x−) + h(y+) + h(y−) + h(z+) + h(z−)]. This states that the head at the central 

node equals the average of heads at the six neighboring nodes. This result is consistent with the 

three-dimensional mean value theorem, which applies to solutions of Laplace’s equation. 

3) Since for solutions of Laplace’s equation, ∇2 h = 0, this equation can be rearranged to give the 

same result as in the previous problem h= 1/6*[h(x+) + h(x−) + h(y+) + h(y−) + h(z+) + h(z−)]. 

4) h3 = 11.09 ft (3.38 m), h2 = 11.42 ft (3.48 m). 

5) The model-predicted head will likely be lower than actual head. Generally model cells are 

much larger than the well radius. The finite difference method assumes a linear variation 

in head (constant gradient) between nodes, but near a well the variation in head is actually 

logarithmic, with steeper gradients closer to the well. The linear variation in a finite difference 

model misses this behavior, underestimating the drawdown in a pumping well and draw-up in 

an injection well. 

6) h = 380.42 m. 

7) h= (K(x+) h(x+) + K(x−) h(x−) + K(y+) h(y+) + K(y−) h(y−) + Qs) / (K(x+) + K(x−) + K(y+) + K(y−)) 

The values of K(x+) , K(x−) , K(y+) , and K(y−) are calculated based on equations like Eq. 9.9. 

 

12) qb2 = 0.0109 m/day, Q = 13.5 m3 /day. 

13) hn = ¼ (ho + hp + hq + hr ) 

14) a) T = K1*h  for (h ≤ b1 ), T = K1*b1 + K2*(h − b1 ) for (b1 ≤ h ≤ (b1 + b2 )),  

T = K1*b1 + K2*b2 for (h ≥ (b1 + b2 )). 

b) Φ = K1 b1^2 + K1 b1 b2 + K2 b1 b2 + K2 b2^2 + C3 for (h = b1 + b2 ) and   

  Φ = ½ K1 b1^2 + K1 b1 b2 + ½ K2 b2^2 for (h = b1 + b2 ),  

 C3 = − ½ K1 b1^2 − K2 b1 b2 − ½  K2 b2^2 

15) ∇^2 (½ Kh^2) = ∇^2 Φ = −N 

16) There are two wells, both extracting water from the aquifer. There is a string of three imper- 

meable barrier line elements in the center of the plot, and a string of three line-sinks in the 

lower right of the plot. In addition, there is a uniform flow from upper left to lower right. 

17) When the head is high enough that aquifer is confined, Φ = Th – ½ Kb^2. 

18) K = 1/ ( ½hp^2 – b*h0 – ½b^2) * Q/(2π) ln (rp→p/ ri→p)  

= 1/( ½*18^2 - 35*39 + ½*35^2) * 2310/2π ln(0.25/118).  


