DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2016

FOURTH PERIOD

DATE: 28 JUNE 2016

TIME: 13.30 - 16.30

Answer ALL Questions

Other instructions Write your name and student number on each sheet

Clearly identify the answer in the answer box

 Name:
 P Vardon
 Student number:
 001

CTB2310 / AESB2330

Question No.	Workings	Answer
1a	Use Brinch Hansen: $p_c = cN_c i_c s_c + qN_q i_q s_q + \frac{1}{2}\gamma' BN_\gamma i_\gamma s_\gamma$ No inclination factors (no wind loads)	FoS = 3.08
	Calculate N factors: $N_q = \frac{1 + \sin \phi}{1 - \sin \phi} \exp(\pi \tan \phi)$ $= \frac{1 + \sin 15}{1 - \sin 15} \exp(\pi \tan 15) = 3.94$ $N_c = (N_q - 1) \cot \phi = 10.98$ $N_r = 2(N_q - 1) \tan \phi = 1.58$	
	Calculate shape factors: $s_{c} = 1 + 0.2 \frac{B}{L} = 1.20$ $s_{q} = 1 + \frac{B}{L} \sin \phi = 1.26$ $s_{\gamma} = 1 - 0.3 \frac{B}{L} = 0.70$	
	Overburden, q: $q = \gamma h = 19 \times 1 = 19 \ kPa$ Total allowable, p _c : $p_c = 20 \times 10.98 \times 1.20 + 19 \times 3.94 \times 1.26 + \frac{1}{2} \times 19 \times 10 \times 1.58 \times 0.70$ $p_c = 462.5 \ kPa$ Applied load, p: Load from water $15 \times 10 = 150 \ kPa$ FoS = $462.5/150.0 = 3.08$	
1b	Now need inclination factors: Horizontal stress, t: $t = \frac{F}{A} = \frac{17.5 \times 10 \times 17}{10 \times 10} = 29.75 \ kPa$ $i_c = 1 - \frac{t}{c + p \ tan \ \phi} = 0.56$ (p = 10x15 + 1x25 = 175 kPa)	FoS = 1.29

$$\begin{aligned} i_q = i_c^2 = 0.31 \\ i_\gamma = i_c^3 = 0.17 \\ p_c = cN_c i_c s_c + qN_q i_q s_q + \frac{1}{2} \gamma' BN_r i_r s_r \\ p_c = 193.3 \ kPa \end{aligned}$$
FoS = 193.3/150.0 = 1.29
$$\begin{aligned} 1c \\ From Brinch Hansen, the shape factors change and q is the variable we must solve. \\ Calculate shape factors: \\ s_c = 1 + 0.2 \frac{B}{L} = 1.10 \\ s_q = 1 + \frac{B}{L} sin \phi = 1.13 \\ s_\gamma = 1 - 0.3 \frac{B}{L} = 0.85 \end{aligned}$$
To keep the FoS the same p_c should be the same:
 $p_c = 193.3 = cN_c i_c s_c + qN_q i_q s_q + \frac{1}{2} \gamma' BN_r i_r s_\gamma \\ \frac{193.3 - cN_c i_c s_c - \frac{1}{2} \gamma' BN_r i_r s_\gamma}{N_q i_q s_q} = q = 27.26 \ kPa \\ q = \gamma h \\ \frac{27.26}{19} = 1.29m \\ Therefore 29cm deeper. \end{aligned}$

Name:P VardonStudent number:001CTB2310 /

AESB2330

Question	Workings	Answer
No. 2a	0 50 Pressure, kPa 100 150 1 -1 9.0, 10.0, 19.0 kPa -1 -1 -1 -3 -3 -3 -1 -1 -1 -1 -4 -5 -5 13.0 kPa 70.0, 83.0 kPa -1 -7 -40.0 kPa 100.0 kPa 140.0 kPa -9 Effective stress Pore water pressure total stress	200
2b	Confined aquifer: $h_0 - h = -\frac{Q_0}{2\pi k H} \ln\left(\frac{r}{R}\right)$ $h_0 - h = 70 \text{ kPa}$ $Q_0 = -(h_0 - h)\frac{2\pi k H}{\ln\left(\frac{r}{R}\right)}$ $= -7\frac{2\pi \times 5.10^{-5} \times 3}{\ln\left(\frac{0.1}{10000}\right)} = 0.000573m^3/s$ = 0.573 l/s	0.573 l/s
2c	Split clay into 2 layers Effective stress at the beginning at the centre of the two layers: $at - 3m \sigma'_{v} = 9 + \frac{(13 - 9)}{4} \times 1 = 10.0 \ kPa$ $at - 5m \sigma'_{v} = 9 + \frac{(13 - 9)}{4} \times 3 = 12.0 \ kPa$	27 cm

Strain: $\varepsilon = \frac{1}{c_p} \ln \left(\frac{\sigma'}{\sigma'_1}\right)$ Pore water pressure at the base of the clay (top of the sand layer) will equal zero. Therefore effective stress at base of clay will equal 83 kPa. In the centre of the two layers: $at - 3m \sigma'_v = 9 + \frac{(83 - 9)}{4} \times 1 = 27.5 \ kPa$ $at - 5m \sigma'_v = 9 + \frac{(83 - 9)}{4} \times 3 = 64.5 \ kPa$ Therefore strain is: $at - 3m \varepsilon = \frac{1}{20} \ln \left(\frac{27.5}{10}\right) = 0.0506$ $at - 5m \varepsilon = \frac{1}{20} \ln \left(\frac{64.5}{12}\right) = 0.0841$ Deformation, $u = 2 \times (\varepsilon_l + \varepsilon_2)$ $= 2 \times (0.0506 + 0.0841) = 0.27 \ m$

Question	Workings	Answer
No. 3a	Worst case scenario for stability is just after the tide has gone out: full water pressure on the active side, no water on the passive side. $T \qquad T $	
	$\begin{array}{c} Q_{w_1} & Q_{a_1} \\ \hline &$	
3b	Assuming no freition on the wall. $K_{a} = 0.33, K_{p} = 3$ $Q_{a1} = \frac{1}{2} K_{a} \gamma'_{a} h_{Qa1}^{2} = \frac{1}{2} \times 0.33 \times (20 - 10) \times (4 + d)^{2}$ $= 26.7 + 13.3d + 1.67d^{2} kN/m$ $Q_{p1} = \frac{1}{2} K_{p} \gamma'_{a} d^{2} = \frac{1}{2} 3 \times 10 \times d^{2} = 15d^{2}$ $Q_{w1} = \frac{1}{2} \gamma_{w} h_{Qw1}^{2} = \frac{1}{2} \times 10 \times (4 + d)^{2}$ $= 80 + 40d + 5d^{2} kN/m$ $Q_{w2} = \frac{1}{2} \gamma_{w} d^{2} = 5d^{2}$ To determine d, take moments around fixed point, i.e. tension anchor. Locations of action (from tension anchor): $d_{a1} = d_{w1} = \frac{2}{3}(d + h) - 0.5 = \frac{2}{3}d + 2.17$	4.21m

$$d_{p1} = d_{w2} = \frac{2}{3}d + 3.5$$
Moments:

$$(26.7 + 13.3d + 1.67d^{2})\left(\frac{2}{3}d + 2.17\right) + (80 + 40d + 5d^{2})\left(\frac{2}{3}d + 2.17\right)$$

$$= (15d^{2})\left(\frac{2}{3}d + 3.5\right) + (5d^{2})\left(\frac{2}{3}d + 3.5\right)$$

$$231.5 + 186.8d - 20.0d^{2} - 8.9d^{3} = 0$$

$$d = 4.21m$$
3c
From horizontal force equilibrium:

$$T = Q_{a1} + Q_{w1} - Q_{p1} - Q_{w2}$$

$$T = 112.3 + 337.0 - 265.9 - 88.6 = 94.9kPa$$
Calculate b, as to whether ground capacity is enough.

$$T < \frac{1}{2}(K_{p} - K_{a})\gamma'_{d}b^{2} = \frac{1}{2}(2.67)10 \times b^{2}$$

$$b > 2.7m$$
Length is:

$$l = active zone from pile + passive zone from anchor$$

$$l = (d + h)tan \theta + b'_{tan \theta}$$

$$\theta = 45 - \frac{\phi}{2} = 30^{\circ}$$

$$l = (4.21 + 4)tan 30 + \frac{2.7}{tan 30} = 9.4 m$$

Question	Workings	Answer
No.		B = 0.95
4a		$p_0 = -50kPa$
	$\Delta p = B(\Delta \sigma_3 + A(\Delta \sigma_1 - \Delta \sigma_3))$	$p_0 = -30 kF u$
	For the initial (isotropic) consolidation phase, $(\Delta \sigma_1 - \Delta \sigma_3) = 0$, therefore we	
	can write:	
	$\Delta p = B(\Delta \sigma_3)$	
	$140 - p_0 = B(200)$	
	$235 - p_0 = B(300)$	
	$B = \frac{235-140}{300-200} = 0.95$ and $p_0 = -50kPa$	
4b		С′
	For c' and ϕ ' we need to calculate σ'_1 and σ'_3 (effective stresses) for both tests:	= 3.07 kPa
	Test 1:	$\phi' = 28.2^{\circ}$
	$\sigma_1' = 323 - 137 = 186 \text{ kPa}$	
	$\sigma_3' = 200 - 137 = 63 \text{ kPa}$	
	Test 2:	
	$\sigma_1' = 525 - 180 = 345 \text{ kPa}$	
	$\sigma_3' = 300 - 180 = 120 \text{ kPa}$	
	Can draw Mohr's circle or solve analytically:	
	$\sigma_{1}' = \sigma_{3}' tan^{2} \left(45 + \frac{\phi'}{2} \right) + 2c' tan \left(45 + \frac{\phi'}{2} \right)$	
	$c' = 3.07 \ kPa$	
	$\phi' = 28.2^{\circ}$	
	Can use a graphical method, but normally less exact. (reduce mark	
	by 2 points)	

