DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2016

FOURTH PERIOD

Page 2 of 10

Question No.	Workings	Answer
1a	Use Brinch Hansen: $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ No inclination factors (no wind loads) Calculate N factors: $\begin{aligned} N_{q}=\frac{1+\sin \phi}{1-\sin \phi} & \exp (\pi \tan \phi) \\ & =\frac{1+\sin 15}{1-\sin 15} \exp (\pi \tan 15)=3.94 \\ N_{c}= & \left(N_{q}-1\right) \cot \phi=10.98 \\ N_{\gamma}= & 2\left(N_{q}-1\right) \tan \phi=1.58 \end{aligned}$ Calculate shape factors: $\begin{aligned} & s_{c}=1+0.2 \frac{B}{L}=1.20 \\ & s_{q}=1+\frac{B}{L} \sin \phi=1.26 \\ & s_{\gamma}=1-0.3 \frac{B}{L}=0.70 \end{aligned}$ Overburden, q: $q=\gamma h=19 \times 1=19 \mathrm{kPa}$ Total allowable, p_{c} : $\begin{gathered} p_{c}=20 \times 10.98 \times 1.20+19 \times 3.94 \times 1.26+\frac{1}{2} \times 19 \times 10 \times 1.58 \times 0.70 \\ p_{c}=462.5 \mathrm{kPa} \end{gathered}$ Applied load, p: Load from water $15 \times 10=150 \mathrm{kPa}$ $\mathrm{FoS}=462.5 / 150.0=3.08$	FoS $=3.08$
1b	Now need inclination factors: Horizontal stress, t: $\begin{gathered} t=\frac{F}{A}=\frac{17.5 \times 10 \times 17}{10 \times 10}=29.75 \mathrm{kPa} \\ i_{c}=1-\frac{t}{c+p \tan \phi}=0.56 \\ (\mathrm{p}=10 \times 15+1 \times 25=175 \mathrm{kPa}) \end{gathered}$	$\mathrm{FoS}=1.29$

	$\begin{gathered} i_{q}=i_{c}{ }^{2}=0.31 \\ i_{\gamma}=i_{c}{ }^{3}=0.17 \\ p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma} \\ p_{c}=193.3 \mathrm{kPa} \\ \mathrm{FoS}=193.3 / 150.0=1.29 \end{gathered}$	
1c	From Brinch Hansen, the shape factors change and q is the variable we must solve. Calculate shape factors: $\begin{aligned} & s_{c}=1+0.2 \frac{B}{L}=1.10 \\ & s_{q}=1+\frac{B}{L} \sin \phi=1.13 \\ & s_{\gamma}=1-0.3 \frac{B}{L}=0.85 \end{aligned}$ To keep the FoS the same p_{c} should be the same: $\begin{gathered} p_{c}=193.3=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma} \\ \frac{193.3-c N_{c} i_{c} s_{c}-\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}}{N_{q} i_{q} s_{q}}=q=27.26 \mathrm{kPa} \\ q=\gamma h \\ \frac{27.26}{19}=1.29 \mathrm{~m} \end{gathered}$ Therefore 29 cm deeper.	29 cm

\qquad

Question No.	Workings	Answer
2a		200
2b	Confined aquifer: $\begin{aligned} & h_{0}-h=-\frac{Q_{0}}{2 \pi k H} \ln \left(\frac{r}{R}\right) \\ & h_{0}-h=70 \mathrm{kPa} \\ & Q_{0}=-\left(h_{0}-h\right) \frac{2 \pi k H}{\ln \left(\frac{r}{R}\right)} \\ & =-7 \frac{2 \pi \times 5.10^{-5} \times 3}{\ln \left(\frac{0.1}{10000}\right)}=0.000573 \mathrm{~m}^{3} / \mathrm{s} \\ & =0.573 \mathrm{l} / \mathrm{s} \end{aligned}$	$0.5731 / \mathrm{s}$
2c	Split clay into 2 layers Effective stress at the beginning at the centre of the two layers: $\begin{aligned} & a t-3 m \sigma_{v}^{\prime}=9+\frac{(13-9)}{4} \times 1=10.0 \mathrm{kPa} \\ & a t-5 m \sigma_{v}^{\prime}=9+\frac{(13-9)}{4} \times 3=12.0 \mathrm{kPa} \end{aligned}$	27 cm

Strain: $\varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma^{\prime}}{\sigma_{1}^{\prime}}\right)$
Pore water pressure at the base of the clay (top of the sand layer) will equal zero. Therefore effective stress at base of clay will equal 83 kPa . In the centre of the two layers:

$$
\begin{aligned}
& a t-3 m \sigma_{v}^{\prime}=9+\frac{(83-9)}{4} \times 1=27.5 \mathrm{kPa} \\
& a t-5 m \sigma_{v}^{\prime}=9+\frac{(83-9)}{4} \times 3=64.5 \mathrm{kPa}
\end{aligned}
$$

Therefore strain is:

$$
\begin{aligned}
& \text { at }-3 m \varepsilon=\frac{1}{20} \ln \left(\frac{27.5}{10}\right)=0.0506 \\
& \text { at }-5 m \varepsilon=\frac{1}{20} \ln \left(\frac{64.5}{12}\right)=0.0841 \\
& 2 \times\left(\varepsilon_{1}+\varepsilon_{2}\right) \\
& =2 \times(0.0506+0.0841)=0.27 \mathrm{~m}
\end{aligned}
$$

Deformation, $u=2 \times\left(\varepsilon_{1}+\varepsilon_{2}\right)$

| Question
 No. | Workings | Answer |
| :--- | :--- | :--- | :--- |
| 3 am | | |
| | Worst case scenario for stability is just after the tide has gone out:
 full water pressure on the active side, no water on the passive side. | |

	$d_{p 1}=d_{w 2}=\frac{2}{3} d+3.5$ Moments: $\begin{aligned} & \begin{array}{r} \left(26.7+13.3 d+1.67 d^{2}\right)\left(\frac{2}{3} d+2.17\right)+\left(80+40 d+5 d^{2}\right)\left(\frac{2}{3} d+2.17\right) \\ \\ =\left(15 d^{2}\right)\left(\frac{2}{3} d+3.5\right)+\left(5 d^{2}\right)\left(\frac{2}{3} d+3.5\right) \\ \\ 231.5+186.8 d-20.0 d^{2}-8.9 d^{3}=0 \end{array} \\ & d=4.21 \mathrm{~m} \end{aligned}$	
3 c	From horizontal force equilibrium: $\begin{gathered} T=Q_{a 1}+Q_{w 1}-Q_{p 1}-Q_{w 2} \\ T=112.3+337.0-265.9-88.6=94.9 \mathrm{kPa} \end{gathered}$ Calculate b, as to whether ground capacity is enough. $\begin{gathered} T<\frac{1}{2}\left(K_{p}-K_{a}\right) \gamma_{d}^{\prime} b^{2}=\frac{1}{2}(2.67) 10 \times b^{2} \\ b>2.7 m \end{gathered}$ Length is: $l=$ active zone from pile + passive zone from anchor $\begin{gathered} l=(d+h) \tan \theta+b / \tan \theta \\ \theta=45-\frac{\phi}{2}=30^{\circ} \\ l=(4.21+4) \tan 30+2.7 / \tan 30=9.4 \mathrm{~m} \end{gathered}$	9.4 m

Question No.	Workings	Answer
4a	$\Delta p=B\left(\Delta \sigma_{3}+A\left(\Delta \sigma_{1}-\Delta \sigma_{3}\right)\right)$ For the initial (isotropic) consolidation phase, $\left(\Delta \sigma_{1}-\Delta \sigma_{3}\right)=0$, therefore we can write: $\begin{gathered} \Delta p=B\left(\Delta \sigma_{3}\right) \\ 140-p_{0}=B(200) \\ 235-p_{0}=B(300) \\ B=\frac{235-140}{300-200}=0.95 \text { and } p_{0}=-50 \mathrm{kPa} \end{gathered}$	$\begin{aligned} & B=0.95 \\ & p_{0}=-50 \mathrm{kPa} \end{aligned}$
4b	For c' and ϕ ' we need to calculate σ_{1}^{\prime} and σ_{3}^{\prime} (effective stresses) for both tests: Test 1 : $\begin{aligned} & \sigma_{1}^{\prime}=323-137=186 \mathrm{kPa} \\ & \sigma_{3}^{\prime}=200-137=63 \mathrm{kPa} \end{aligned}$ Test 2: $\begin{aligned} & \sigma_{1}^{\prime}=525-180=345 \mathrm{kPa} \\ & \sigma_{3}^{\prime}=300-180=120 \mathrm{kPa} \end{aligned}$ Can draw Mohr's circle or solve analytically: $\begin{array}{r} \sigma_{1}^{\prime}=\sigma_{3}^{\prime} \tan ^{2}\left(45+\phi^{\prime} / 2\right)+2 c^{\prime} \tan \left(45+\phi^{\prime} / 2\right) \\ c^{\prime}=3.07 \mathrm{kPa} \\ \phi^{\prime}=28.2^{\circ} \end{array}$ Can use a graphical method, but normally less exact. (reduce mark by 2 points)	$\begin{aligned} & c^{\prime} \\ & =3.07 \mathrm{kPa} \\ & \phi^{\prime}=28.2^{\circ} \end{aligned}$

4c		\qquad \qquad
4d	Need to identify pole (see above). Using a number of trigonometric methods is possible to determine the principle stresses. Simplest is to calculate the centre and the radius of the Mohr's circle: Radius: $r=\left(\sigma_{1}-\sigma_{3}\right) / 2=61.5 \mathrm{kPa}$ Centre: centre $=\sigma_{3}+r=124.5 \mathrm{kPa}$ Shear stress at plane of failure: $\tau_{f}=r \sin \left(90-\phi^{\prime}\right)=54.2 k P a$ Normal force: $\sigma_{n}=$ centre $-r \cos \left(90-\phi^{\prime}\right)=95.5 \mathrm{kPa}$ Angle to horizontal is: $\tan ^{-154.2} /(95.5-63)=59.1^{\circ}$	τ_{f} $=54.2 \mathrm{kPa}$ 59.1° to hor.

