DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics II

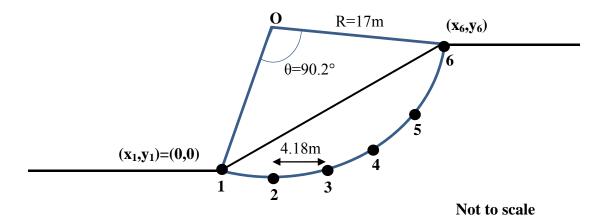
CT2091

BSc EXAMINATION 2013 - RESIT

SECOND PERIOD

DATE: 22 January 2013

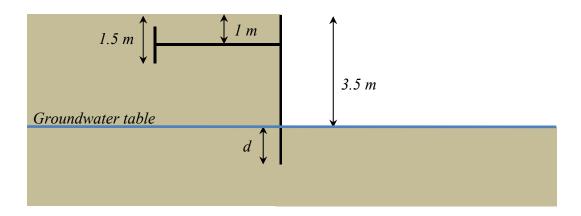
TIME: 09.00 - 12.00


Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each answer sheet

Clearly identify the answer in the answer box

- 1) A slope is built for a river dike, as shown in the figure below. A circular failure surface is considered as a possible failure mode. The failure surface passes through the top and crest of the slope. The soil properties are $\gamma = 18 \text{ kN/m}^3$, c = 25 kPa and $\phi = 5^\circ$.
 - a. Use Fellenius' method to determine the Factor of Safety against failure. [10 marks]
 - b. Use Bishop's method to determine the Factor of Safety against failure for the same slope. (Use only 1 iteration and a starting guess of F=1) [10 marks]
 - c. Noting the ϕ is low and the majority of the soil strength comes from cohesion, determine the factor of safety by treating the failure volume as a whole and determining the overturning moment and resistance moment. (Hint: F = shear resistance moment / overturning moment = $c_u R^2 \theta / W d$) [5 marks]


Point	x (m)	y (m)	Angle to vertical
			(°)
0	4.46	16.40	-
1	0	0	-15.2
2	4.18	-0.60	-1.0
3	8.36	-0.14	13.2
4	12.54	1.44	28.3
5	16.72	4.60	46.1
6	20.90	12.00	75.0

- 2) In a consolidated undrained test on a saturated soil specimen the following procedure was adopted:
 - i. Consolidate under a cell pressure of 200 kPa
 - ii. Consolidate under a deviator stress of 100 kPa
 - iii. Sample drain closed and cell pressure raised to 400 kPa
 - iv. Sample loaded to failure

If A = 0.15, B=1, c' = 0 and $\phi' = 20^{\circ}$, calculate the compression strength. [15 marks]

- 3) A sheet pile wall is designed for an excavation as shown in the figure below. The properties of the soil are: $\gamma = 20 \text{ kN/m}^3$, $\phi = 30^\circ$, cohesion is c = 0 kPa. Assume that the groundwater table is at the level of the excavation ground surface throughout.
 - a. Sketch the forces and location of the action on the pile. [7 marks]
 - b. Calculate the minimum embedded depth of the pile against failure due to rotation. [**13 marks**]
 - c. Calculate the force in the tension anchor. [5 marks]
 - d. Calculate the minimum length of the tension anchor. The tension anchor end plate can act only over the first 1.5m of soil. [5 marks]

Test No.	Normal force, N	Shear force, N
1	400	287
2	780	508
3	1100	694

4) Three direct shear tests were performed on samples of a silty sand. The results obtained at failure are shown in the table below.

The area of the sample is 3600 mm^2 .

- a. Estimate the effective strength parameters c' and φ '. [10 marks]
- b. For Test No. 2:
 - i. Draw the Mohr's circle at failure and the Coulomb failure line. [5 marks]
 - ii. Determine the magnitude and orientation of the principle effective stresses at failure. [8 marks]
 - iii. Determine the magnitude of the maximum shear stress and the orientation of the plane on which it acts. [7 marks]

[END OF EXAM]