DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics II

CT2091

BSc EXAMINATION 2013 - RESIT

ANSWER BOOK

SECOND PERIOD

DATE: 22 January 2013

TIME: 09.00 – 12.00

Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each sheet

<u>Clearly identify the answer in the answer box</u>

Question No.	Workings						Answer				
1a	Split into 5 slices, based upon 6 points given, so that each slice has									F = 1.37	
	a width of B=4.18 m										
	Results of calculations in table below.										
	1. average angles of points to get mid-slice angle										
	2. determine height of slice at mid-point (from slope and average y										
	coords)										
	3. Cal	culate slice	e prope	rties, s	um ai	nd calcu	ılate	F.			
	Slice Angle to		h at	A	=	<i>B</i> =	B =		. =	<i>D</i> =	
		vertical at mid- height (°)	mid- slice (m)	γhco	os² α	c + Ato	ın φ	B/c	cos α	γhsin α	
	1	-8.08	1.50	26.49)	27.32		27.5	9	-3.80	
	2	6.14	3.97	70.68	8	31.18		31.3	6	7.67	
	3	20.78	5.35	84.10	5	32.36		34.6	2	34.24	
	4	37.20	5.37	61.19	9	30.35		38.1	4	58.49	
	5	60.53	2.45	10.57	7	25.92		52.9	8	38.49	
						Σ	<i>CC</i> =	184.	70		
									$\Sigma D =$	135.10	
	$F = \frac{\Sigma C}{\Sigma D} = 1.37$										
1b									F = 1.36		
	Same approach as a, but with Bishop's method. Normally need to										
						-		INU	rmally	need to	
		approach a				-					
		, but for e	at		tion o	only, F= B =	=1. С	=	D	<i>E</i> =	
	iterate	Angle h to m vertical sl	xam fir at ^{iid-} c	st iterat	tion o	only, F=	:1.	= α (1	-		
	iterate	Angle h to m vertical sl (°) (r	xam fir at id- c ice + 1	st iterat $A =$ <i>vhtan φ</i>	tion of tan of	$bonly, F=$ $B =$ $\alpha \tan \phi$	-1. C cos	= α (1)	D = A	<i>E</i> =	
	iterate	Angle to m h vertical (°) (r) -8.08 1.	$\begin{array}{c c} xam fir \\ at \\ iid- \\ ice \\ n) \end{array} + \gamma$	st iterat $A =$ whtan ϕ 36	tion o tan o / F	$bonly, F=$ $B =$ $\alpha \tan \phi$	$\begin{array}{c} 1. \\ C \\ cos \\ + B \end{array}$	= α (1)	D = A /C	E = γhsin α	
	Iterate	Angle to rest Angle to rest to rest vertical (°) -8.08 1. 6.14	$\begin{array}{c c} \text{at} \\ \text{at} \\ \text{iid-} \\ \text{ice} \\ \text{n} \end{array} \begin{array}{c} c \\ + \gamma \\ 50 \end{array}$	st iterat $A =$ $har \phi$ abcorrections of the second state of th	tion o tan o / F -0.01	$bonly, F=$ $B =$ $\alpha \tan \phi$	$\begin{array}{c} 1.\\ C\\ cos\\ +B \end{array}$	= α (1)	D = A /C 27.99	$E = \gamma h sin \alpha$ -3.80	
	iterate	Angle to	$\begin{array}{c c} xam fir \\ at \\ iid- \\ ice \\ n) \end{array} \begin{pmatrix} c \\ + \\ 1 \end{pmatrix} \\ \hline 50 27. \\ 97 31. \end{array}$	st iterat $A =$ $har \phi$ abcorrections of the set of	tion c tan c / F -0.01 0.01	$bonly, F=$ $B =$ $\alpha \tan \phi$	 C cos (+ B) 0.98 1.00 	= α (1)	D = A /C 27.99 31.14	$E = \gamma h sin \alpha$ -3.80 7.67	
	iterate	Angle to vertical (°) h mm sl (r) -8.08 1. 6.14 3. 20.78 5. 37.20 5.	xam fir at c iid- c ice $+ \eta$ 50 27. .97 31. .35 33.	st iteration $A =$ whtan ϕ 36 26 43 45	tion c tan c / F -0.01 0.01 0.03	$bonly, F=$ $B =$ $\alpha \tan \phi$	 1. <i>C</i> <i>cos</i> <i>+ B</i> 0.98 1.00 0.97 	= α (1)	D = A / C 27.99 31.14 34.61	$E =$ $\gamma hsin \alpha$ -3.80 7.67 34.24	
	iterate Slice	Angle to vertical (°) h mm sl (r) -8.08 1. 6.14 3. 20.78 5. 37.20 5.	xam fir at id- ice n) .50 .50 .97 .35 .37 .33	st iteration $A =$ whtan ϕ 36 26 43 45	tion c tan c / F -0.01 0.03 0.07	$bonly, F=$ $B =$ $\alpha \tan \phi$	 1. <i>C</i> <i>cos</i> <i>+ B</i> 0.98 1.00 0.97 0.85 0.57 	= α (1)	D = A / C 27.99 31.14 34.61 39.41	$E = \gamma h sin \alpha$ -3.80 7.67 34.24 58.49	

1c	Resist	F = 1.20				
	Can a					
	Slice	W=hBy (kN)	d= -4.46 + B(slice / 0.5) (m)	Wd (kNm)		
	1	112.9	-2.37	-267.7		
	2	298.9	1.81	540.9		
	3	402.7	5.99	2412.0]	
	4	403.8	10.17	4106.7]	
	5	184.5	14.35	2647.5		
			$\Sigma Wd =$	9439.5		
	$F = \frac{resistive moment}{overturning moment} = \frac{11374}{9439.5} = 1.20$ Note that all solutions have similar results. Slope is likely to be					
	safe, but FoS is not significant.					

Question	Workings	Answer
<u>No.</u> 3a		
3b		
	$K'_{p} = \frac{1 + \sin\phi'}{1 - \sin\phi'} = 3$ $K'_{a} = \frac{1 - \sin\phi'}{1 + \sin\phi'} = 0.33$	d = 2.073 m
	Forces: Active forces:	
	From total stress soil top section, $\frac{1}{2}K_a\gamma(3.5)^2$ kN	
	Location of action from tension anchor, $(2/3)\times3.5 - 1$ m From total stress soil rect. section, $K_a\gamma3.5d$ kN Location of action from tension anchor, $d/2 + 2.5$ m Effective stress base triangular section, $\frac{1}{2}K_a\gamma'(d)^2$ kN Location of action from tension anchor, $2d/3 + 2.5$ m From water, $\frac{1}{2}K_0\gamma'(d)^2$	
	Passive forces:	
	From effective stress soil, $\frac{1}{2}K_p\gamma'd^2$ Location of action from tension anchor, $2d/3 + 2.5$ m From water, $\frac{1}{2}K_0\gamma'(d)^2$	
	Rotation around tension anchor (ignoring water as equal in both directions).	
	Moments:	

	Overturning: $\frac{1}{2}K_{a}\gamma 3.5^{2} \times [1.33] + K_{a}\gamma 3.5d \times \left[2.5 + \frac{d}{2}\right] + \frac{1}{2}K_{a}\gamma'(d)^{2} \times \left[\frac{2}{3}d + 2.5\right]kNm$ Resisting: $\frac{1}{2}K_{p}\gamma'd^{2} \times \left[\frac{2}{3}d + 2.5\right]kNm$ overturning = resisting $54.39 + 58.325d - 21.7d^{2} - 8.9d^{3} = 0$ $d = 2.073m$	
3c	$\frac{1}{2}K_a\gamma(3.5)^2 = 40.83 \text{ kN}$ $K_a\gamma3.5d = 48.37 \text{ kN}$ $\frac{1}{2}K_a\gamma'(d)^2 = 7.16 \text{ kN}$ $\frac{1}{2}K_p\gamma'd^2 = 64.46 \text{ kN}$ Tension anchor via horizontal equilibrium: T = 40.83 + 48.37 + 7.16 - 64.46 = 31.91 kN	31.91 kN
3d	$b = 1.5m \text{ (from question)}$ $l = \text{active zone from pile + passive zone from anchor}$ $Q_p = \frac{1}{2}K_p\gamma b^2 = 67.5 \text{ kN}$ $l = (d + 3.5)tan \theta + \frac{b}{tan \theta}$ $\theta = 45 - \frac{\phi}{2} = 30^{\circ}$ $l = (2.073 + 3.5)tan 30 + \frac{1.5}{tan 30} = 5.81 \text{ m}$	5.81 m

Question Workings

Answer

Angle using trig from Pole (which is known from shear failure – opposite side of circle) $tan \theta = \frac{163.3 - 141.1}{298.8 - 216.7} = 15.1^{\circ}$ to horizontal.	τ_{max} = 163.3 kPa 15.1° to horiz.
--	---