DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Civil Engineering and Geosciences

Soil Mechanics II
CT2091

BSc EXAMINATION 2013 - RESIT

ANSWER BOOK

SECOND PERIOD

DATE: 22 January 2013
TIME: $09.00-12.00$

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet

Clearly identify the answer in the answer box

Question No.	Workings								Answer$\mathrm{F}=1.37$$\mathrm{F}=1.36$
1a	Split into 5 slic a width of $B=4$ Results of calcu 1. average angl 2. determine he coords) 3. Calculate sli $F=\frac{\Sigma C}{\Sigma D}=1.37$	ces, b 4.18 ulatio les of eight ice prop	ased upon ns in table points to g of slice at operties, su	6 poi belo get mid mid-p m an $=$	nts giv W. id-slic point d cal $\begin{array}{r}B \\ c+A \\ \hline\end{array}$ 27.32 31.18 32.36 30.35 25.92	en, so ang rom ulate " ϕ $C=$	that each slope and a F.	slice has average y	
1b	Same approach iterate, but for $F=\frac{\Sigma C}{\Sigma D}=1.36$		but with B first iterat $A=$ c $+\gamma h t a n$ 27.36 31.26 33.43 33.45 28.86		$\begin{aligned} & \frac{p}{x} \mathrm{~m} \\ & \text { nly, F } \\ & \hline= \\ & x \tan \phi \end{aligned}$	\% 1.0	Normally $\qquad=$$D$ $=A$ $/ C$ 27.9931.14 34.61	need to	

Question No.	Workings	Answer
3a		
3b		

	Overturning: $\begin{gathered} \frac{1}{2} K_{a} \gamma 3.5^{2} \times[1.33]+K_{a} \gamma 3.5 d \times\left[2.5+\frac{d}{2}\right]+\frac{1}{2} K_{a} \gamma^{\prime}(d)^{2} \\ \times[2 / 3 d+2.5] \mathrm{kNm} \end{gathered}$ Resisting: $\begin{gathered} \frac{1}{2} K_{p} \gamma^{\prime} d^{2} \times[2 / 3 d+2.5] \mathrm{kNm} \\ \text { overturning }=\text { resisting } \end{gathered}$ $54.39+58.325 d-21.7 d^{2}-8.9 d^{3}=0$ $d=2.073 \mathrm{~m}$	
3c	$\begin{aligned} & \frac{1}{2} K_{a} \gamma(3.5)^{2}=40.83 \mathrm{kN} \\ & K_{a} \gamma 3.5 d=48.37 \mathrm{kN} \\ & \frac{1}{2} K_{a} \gamma^{\prime}(d)^{2}=7.16 \mathrm{kN} \\ & \frac{1}{2} K_{p} \gamma^{\prime} d^{2}=64.46 \mathrm{kN} \end{aligned}$ Tension anchor via horizontal equilibrium: $T=40.83+48.37+7.16-64.46=31.91 \mathrm{kN}$	31.91 kN
3d	$\mathrm{b}=1.5 \mathrm{~m}$ (from question) $l=$ active zone from pile + passive zone from anchor $\begin{gathered} Q_{p}=\frac{1}{2} K_{p} \gamma b^{2}=67.5 \mathrm{kN} \\ l=(d+3.5) \tan \theta+b / \tan \theta \\ \theta=45-\frac{\phi}{2}=30^{\circ} \\ l=(2.073+3.5) \tan 30+1.5 / \tan 30=5.81 \mathrm{~m} \end{gathered}$	5.81 m

	Angle using trig from Pole (which is known from shear failure - opposite side of circle) $\tan \theta=\frac{163.3-141.1}{298.8-216.7}=15.1^{\circ}$ to horizontal.	$\tau_{\max }$ $=163.3 \mathrm{kPa}$ 15.1° to horiz.

