DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Civil Engineering and Geosciences

Soil Mechanics II

CT2091

BSc EXAMINATION 2012

ANSWER BOOK

MOCK EXAM II

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet
Clearly identify the answer in the answer box

Question No.	Workings	Answer
1a	Test 1 $\sigma_{3}=0 \text { to } 100 \mathrm{kPa}$ $\begin{aligned} & \mathrm{p}_{0}=-25+0.75 \times 100=50 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{f}}=50+0.75(0.3 \times 93)=70.9 \mathrm{kPa} \end{aligned}$ Test 2 $\begin{aligned} & \sigma_{3}=0 \text { to } 200 \mathrm{kPa} \\ & \mathrm{p}_{0}=-25+0.8 \times 200=135 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{f}}=135+0.8(0.3 \times 112)=161.9 \mathrm{kPa} \end{aligned}$ Test 3 $\begin{aligned} & \sigma_{3}=0 \text { to } 300 \mathrm{kPa} \\ & \mathrm{p}_{0}=-25+0.85 \times 300=230 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{f}}=230+0.85(0.3 \times 116)=259.6 \mathrm{kPa} \end{aligned}$	Test 1 $\begin{aligned} & \mathrm{p}_{0}=50 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{f}}=70.9 \mathrm{kPa} \end{aligned}$ Test 2 $\begin{aligned} & \mathrm{p}_{0}=135 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{f}}=161.9 \\ & \mathrm{kPa} \end{aligned}$ Test 3 $\begin{aligned} & \mathrm{p}_{0}=230 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{f}}=259.6 \\ & \mathrm{kPa} \end{aligned}$
1b	At failure: Test 1 $\begin{aligned} & \sigma_{3}=0 \text { to } 100 \mathrm{kPa} \\ & \sigma_{3}{ }_{\mathrm{f}}=100-70.9=29.1 \mathrm{kPa} \\ & \sigma_{1}{ }_{\mathrm{f}}=193-70.9=122.1 \mathrm{kPa} \end{aligned}$ Test 2 $\begin{aligned} & \sigma_{3, \mathrm{f}}^{\prime}=200-161.9=38.1 \mathrm{kPa} \\ & \sigma_{1}^{\prime}{ }_{\mathrm{f}}=312-161.9=150.1 \mathrm{kPa} \end{aligned}$ Test 3 $\begin{aligned} & \sigma_{3}^{\prime}{ }_{\mathrm{f}}=300-259.6=40.4 \mathrm{kPa} \\ & \sigma_{1}{ }^{\prime}=412-259.6=156.4 \mathrm{kPa} \end{aligned}$ From Mohr's circle: $c^{\prime}=10 \mathrm{kPa}, \phi,=30^{\circ}$	Answers in kPa Test 1 $\sigma_{3}{ }_{f}=29.1$ $\sigma_{1}{ }^{\prime}{ }_{f}=122.1$ Test 2 $\sigma_{3}{ }_{f}=38.1$ $\sigma_{1}{ }^{\prime}=150.1$ Test 3 $\sigma_{3}{ }_{f}=40.4$ $\sigma_{1}{ }^{\prime} \mathrm{f}=156.4$ $\begin{aligned} & c^{\prime}=10 \\ & \phi^{\prime}=30^{\circ} \end{aligned}$

Question No.	Workings	Answer
2a	Use the Brinch Hansen method. $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ No inclination, long structure: $p_{c}=c N_{c}+q N_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma}$ Calculate N factors: $N_{q}=\frac{1+\sin \phi}{1-\sin \phi} \exp (\pi \tan \phi)=1.0$ Use $\phi=0.001^{\circ}$ $\begin{gathered} N_{c}=\left(N_{q}-1\right) \cot \phi=5.14 \\ N_{\gamma}=2\left(N_{q}-1\right) \tan \phi=0 \end{gathered}$ No effective overburden. Total allowable, p_{c} : $p_{c}=25 \times 5.14=128 \mathrm{kPa}$ Applied load, p: Weight of concrete $(25 \times 0.25 \times 2) \times(12 \times 20+20 \times 5+5 \times$ 12) $=5000 \mathrm{kN}$ Weight of fill $(5-0.5) \times(12-0.5) \times(20-0.5) \times 17.5=$ 17660 kN Total load $=22660 \mathrm{kN}$ Total $/$ area $=2682.5 /(12 \times 20)=94 \mathrm{kPa}$ $\mathrm{FoS}=128 / 94=1.36$	$\mathrm{FoS}=1.36$
2b	Need to consider the shape of the caisson: $p_{c}=c N_{c} s_{c}+q N_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} s_{\gamma}$ Calculate shape factors: $\begin{gathered} s_{c}=1+0.2 \frac{B}{L}=1.12 \\ s_{q}=1+\frac{B}{L} \sin \phi=1.0 \\ s_{\gamma}=1-0.3 \frac{B}{L}=0.82 \\ p_{c}=c N_{c} s_{c}+q N_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} s_{\gamma}=143.9 \mathrm{kPa} \\ \mathrm{FoS}=144 / 94=1.52 \end{gathered}$	$\mathrm{FoS}=1.52$

2c	Use the Brinch Hansen method. $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ In this case need the inclinations factors: $p_{c}=c N_{c} i_{c} s_{c}$ Horizontal stress, t: $\begin{gathered} t=\frac{F \operatorname{per} m}{\text { width }}=\frac{100}{12}=8.3 \mathrm{kPa} \\ i_{c}=1-\frac{t}{c+p \tan \phi}=0.66 \\ i_{q}=i_{c}^{2}=0.44 \\ i_{\gamma}=i_{c}^{3}=0.30 \\ p_{c}=86.0 \mathrm{kPa} \end{gathered}$ $\mathrm{FoS}=86 / 94=0.91$	$\mathrm{FoS}=0.91$

Question No.	Workings	Answer
3a		
3b	Appropriate method is Bishop. Could also use Fellenius, but assumptions are less robust and equilibrium is not maintained reduce 1 mark if used. $\begin{gathered} A=c+(\gamma h) \tan \phi \\ B=\tan \alpha \tan \phi / F \\ C=\cos \alpha(1+B) \\ D=A / C \\ E=(\gamma h) \sin \alpha \end{gathered}$ Need to input F is item B. Use 1 for initial estimate. $F=\frac{\Sigma C}{\Sigma D}=2.03$ Note can to iterate to get better solution. For exam purposes no need to iterate.	$\mathrm{FoS}=1.21$

| Question
 No. | Workings | Answer |
| :--- | :--- | :--- | :--- |
| 4 a | | |

	Passive forces: From lower triangle, $\frac{1}{2} K_{p} \gamma^{\prime} d^{2}=0.5 \times 3.69 \times(18-10) \times 6^{2}=531 \mathrm{kN}$ at $14 m$ from top From water, $\frac{1}{2} K_{0} \gamma^{\prime} d^{2}=180 \mathrm{kN}$ at 14 m from top Moments around tension anchor (note 2 m below surface): Anticlockwise: $43.4 \times 6+244 \times 4.7+293 \times 11+39 \times 12+180 \times 12=7246 \mathrm{kN}$ Clockwise: $531 \times 12+180 \times 12=8537 \mathrm{kN}$ $\text { FoS }=8537 / 7246=1.18$	
4c	Horizontal equilibrium to determine T (tension +ive direction) $\begin{gathered} T=43+244+293+39-531 \\ T=87.6 k N \end{gathered}$	$\begin{aligned} & T \\ & =87.6 \mathrm{kN} \end{aligned}$
4d	Calculate length, 1 : $l=$ active zone from pile + passive zone from anchor $\begin{gathered} l=(d+h) \tan \theta+b / \tan \theta \\ \theta=45-\frac{\phi}{2}=27.5^{\circ} \\ l=(6+10) \tan 27.5+3 / \tan 27.5=14.1 \mathrm{~m} \end{gathered}$	$\begin{aligned} & l \\ & =14.1 \mathrm{~m} \end{aligned}$

