DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics II

CT2091

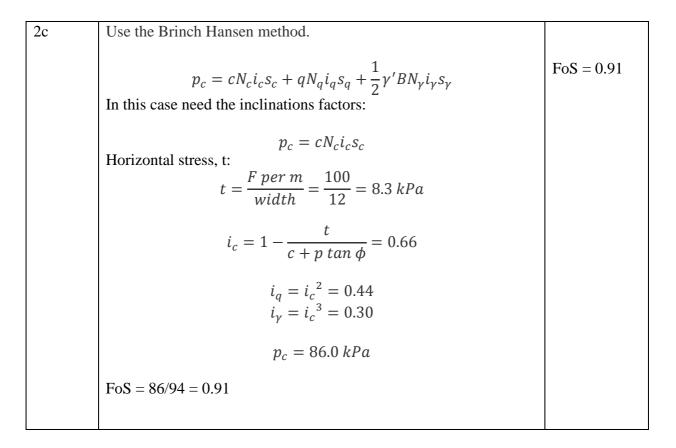
BSc EXAMINATION 2012

ANSWER BOOK

MOCK EXAM II

DATE: 2012

TIME: 3 HOURS


Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each sheet

<u>Clearly identify the answer in the answer box</u>

Question No.	Workings	Answer
1a	Test 1 $\sigma_3 = 0$ to 100 kPa $p_0 = -25 + 0.75 \times 100 = 50$ kPa $p_f = 50 + 0.75 (0.3x93) = 70.9$ kPa Test 2 $\sigma_3 = 0$ to 200 kPa $p_0 = -25 + 0.8 \times 200 = 135$ kPa $p_f = 135 + 0.8 (0.3x112) = 161.9$ kPa Test 3 $\sigma_3 = 0$ to 300 kPa $p_0 = -25 + 0.85 \times 300 = 230$ kPa $p_f = 230 + 0.85 (0.3x116) = 259.6$ kPa	$Test 1 p_0 = 50 kPa p_f = 70.9 kPa Test 2 p_0 = 135 kPa p_f = 161.9 kPa Test 3 p_0 = 230 kPa p_f = 259.6 kPa$
1b	At failure: Test 1 $\sigma_3 = 0$ to 100 kPa $\sigma_3'_f = 100 - 70.9 = 29.1$ kPa $\sigma_1'_f = 193 - 70.9 = 122.1$ kPa Test 2 $\sigma_3'_f = 200 - 161.9 = 38.1$ kPa $\sigma_1'_f = 312 - 161.9 = 150.1$ kPa Test 3 $\sigma_3'_f = 300 - 259.6 = 40.4$ kPa $\sigma_1'_f = 412 - 259.6 = 156.4$ kPa	Answers in kPa Test 1 $\sigma_{3'f} = 29.1$ $\sigma_{1'f} = 122.1$ Test 2 $\sigma_{3'f} = 38.1$ $\sigma_{1'f} = 150.1$ Test 3 $\sigma_{3'f} = 40.4$ $\sigma_{1'f} = 156.4$
	$\int_{1}^{1} \int_{1}^{1} \int_{1$	c'=10 φ'=30°

Question No.	Workings	Answer
2a	Use the Brinch Hansen method.	
	$p_{c} = cN_{c}i_{c}s_{c} + qN_{q}i_{q}s_{q} + \frac{1}{2}\gamma'BN_{\gamma}i_{\gamma}s_{\gamma}$ No inclination, long structure: $p_{c} = cN_{c} + qN_{q} + \frac{1}{2}\gamma'BN_{\gamma}$ Calculate N factors: $N_{q} = \frac{1 + \sin\phi}{1 - \sin\phi}\exp(\pi \tan\phi) = 1.0$ Use $\phi = 0.001^{\circ}$ $N_{c} = (N_{q} - 1)\cot\phi = 5.14$ $N_{\gamma} = 2(N_{q} - 1)\tan\phi = 0$ No effective overburden.	FoS = 1.36
	Total allowable, p _c : $p_c = 25 \times 5.14 = 128 kPa$	
	Applied load, p: Weight of concrete $(25 \times 0.25 \times 2) \times (12 \times 20 + 20 \times 5 + 5 \times 12) = 5000 kN$ Weight of fill $(5 - 0.5) \times (12 - 0.5) \times (20 - 0.5) \times 17.5 = 17660 kN$ Total load = 22660 kN Total / area = 2682.5 / (12x20) = 94 kPa	
	FoS = 128/94 = 1.36	
2b	Need to consider the shape of the caisson:	
	$p_c = cN_cs_c + qN_qs_q + \frac{1}{2}\gamma'BN_\gamma s_\gamma$	FoS = 1.52
	Calculate shape factors:	
	$s_c = 1 + 0.2 \frac{B}{L} = 1.12$	
	$s_q = 1 + \frac{B}{L}\sin\phi = 1.0$	
	$s_{\gamma} = 1 - 0.3 \frac{B}{L} = 0.82$	
	$p_c = cN_cs_c + qN_qs_q + \frac{1}{2}\gamma'BN_\gamma s_\gamma = 143.9 \ kPa$	
	FoS = 144/94 = 1.52	

Question	Workin	gs							Answer
No.									
3a			/				_		
							↓ ↓	↓//▼	
3b	Approp	riate me	ethod is	Bishop	o. Coul	d also us	e Fellen	ius, but	
					nd equil	ibrium is	s not mai	intained -	
	reduce	1 mark	if used.						FoS = 1.21
				A = c	$x + (\gamma h)$)tan φ			
					cos α (1				
					D = A/c				
				E =	: (<i>γh</i>) s	in α			
	Need to	input F	⁷ is iten	n B. Us	e 1 for	initial es	timate.		
		-							
		Angle	h	A	В	С	D	Ε	
		to horiz.,	mid- slice						
		α (°)	(m)						
	1	-20.4	1.12	31.76	-0.03	0.91	35.03	-7.03	
		-6.0	3.10	34.87	-0.01	0.99	35.39	-5.82	
		8.05 22.65	4.56 5.50	37.18 38.66	0.01 0.04	1.00 0.96	37.09 40.42	11.49 38.12	
		39.20	5.02	37.90	0.04	0.90	45.65	57.05	
		64.60	2.10	33.31	0.18	0.51	65.57	34.15	
						1 -			
						$\Sigma D =$	259.15		
							$\Sigma E =$	127.97	
	$F = \frac{\Sigma C}{\Sigma D}$	=2.03							
	Note ca need to		ate to g	get bette	er soluti	on. For	exam pu	rposes no)

Question No.	Workings	Answer
4a		
	Active and passive forces shown above. Locations of action at 1/3 height (from base) of triangles and at mid-height of rectangles. Note active force is made up of 2 triangles and 2 rectangles.	
4b	Active earth pressure coefficients: $K'_{p} = \frac{1 + \sin\phi'}{1 - \sin\phi'} = 3.69$ $K'_{a} = \frac{1 - \sin\phi'}{1 + \sin\phi'} = 0.27$ Triangular forces: $= \frac{1}{2}K\gamma'd^{2}$	FoS = 1.18
	From lower triangle, $\frac{1}{2}K_a\gamma'd^2 = 0.5 \times 0.27 \times (18 - 10) \times 6^2 = 39kN$ at From water, $\frac{1}{2}K_a\gamma'd^2 = 180kN$ at $14m$ from top	

·		1
	Passive forces: From lower triangle, $\frac{1}{2}K_p\gamma'd^2 = 0.5 \times 3.69 \times (18 - 10) \times 6^2 = 531kN$ at <i>14m</i> from top From water, $\frac{1}{2}K_0\gamma'd^2 = 180kN$ at <i>14m</i> from top	
	Moments around tension anchor (note 2m below surface): Anticlockwise: $43.4 \times 6 + 244 \times 4.7 + 293 \times 11 + 39 \times 12 + 180 \times 12 = 7246 \ kN$ Clockwise: $531 \times 12 + 180 \times 12 = 8537 \ kN$ FoS = $8537/7246 = 1.18$	
4c	Horizontal equilibrium to determine T (tension +ive direction) $T = 43 + 244 + 293 + 39 - 531$ $T = 87.6 \ kN$	T = 87.6 kN
4d	Calculate length, 1:	<i>l</i> = 14.1 <i>m</i>
	<i>l</i> = active zone from pile + passive zone from anchor $l = (d + h)tan \theta + \frac{b}{tan \theta}$ $\theta = 45 - \frac{\phi}{2} = 27.5^{\circ}$ $l = (6 + 10)tan 27.5 + \frac{3}{tan 27.5} = 14.1 m$	