DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Civil Engineering and Geosciences

Soil Mechanics I - MOCK EXAM II

CT1091

BSc EXAMINATION 2012

ANSWER BOOK

FOURTH PERIOD

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet
Clearly identify the answer in the answer box

Name: P Vardon Student number: 9999

Question No.	Workings	Answer
1a		
1b	$5 \times 17.5=87.5 \mathrm{kPa}$ as pore water will take all additional load until water can drain.	87.5 kPa
1c	Prior to construction can be calculated from either volumetric weight as is 1a or by averaging values at top and bottom of layer. Centre of silty clay, NAP $=-5.25 \mathrm{~m}$ Pore pressure $=7.5+(42.5-7.5) / 2=25 \mathrm{kPa}$ Total stress $=46+(102-46) / 2=74 \mathrm{kPa}$ Effective stress $=74-25=49 \mathrm{kPa}$ Centre of clay, NAP $=-11.5 \mathrm{~m}$ Pore pressure $=42.5+(132.5-42.5) / 2=87.5 \mathrm{kPa}$ Total stress $=102+(255-102) / 2=178.5 \mathrm{kPa}$ Effective stress $=178.5-87.5=91 \mathrm{kPa}$ Pore pressure remains the same after excess pore pressure have dissipated, therefore total stresses and effective stresses all increase by 87.5 kPa . Therefore total stresses are: 161.5 kPa and 266 kPa and effectives stresses are 136.5 and 178.5 kPa .	Before Total stresses: 74 kPa 178.5 kPa Effective stresses: 49 kPa 91 kPa After Total stresses: 161.5 kPa 266 kPa Effective stresses: 136.5 kPa 178.5 kPa
1d	$\begin{aligned} & \varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma}{\sigma_{1}}\right) \\ & \frac{1}{8} \ln \left(\frac{136.5}{49}\right)=0.128, \text { deformation }=0.128 \times 3.5=0.45 \mathrm{~m} \\ & \frac{1}{14} \ln \left(\frac{178.5}{91}\right)=0.048, \text { deformation }=0.048 \times 9=0.43 \mathrm{~m} \\ & \text { Total }=0.45+0.43=0.88 \mathrm{~m} \end{aligned}$	0.88 m

Question No.	Workings	Answer
1e	Spacing is 500m therefore maximum $\mathrm{r}=250 \mathrm{~m}$	
	Head loss can equal the current hydraulic head, i.e. $132.5 / 10=$ 13.25 m For a confined aquifer of $\mathrm{H}=10 \mathrm{~m}$ $h=h_{0}+\frac{Q_{0}}{2 \pi k H} \ln \left(\frac{r}{R}\right)$ $h-h_{0}=-13.25=\frac{Q_{0}}{2 \pi \times 5.9 .10^{-6} \times 10} \ln \left(\frac{0.125}{250}\right)$ $Q_{0}=0.0006462 \mathrm{~m}^{3} / \mathrm{s}=2.3 \mathrm{~m}^{3} / \mathrm{hour}$	$Q_{0}=2.3$ $m^{3} /$ hour

\qquad

\qquad

2d	Could either do this by algebra or by completing the result numerically. 1) $c_{v}=\frac{k}{\gamma_{w} \cdot m_{v}} \text { and } t_{99}=\frac{1.784 h^{2}}{c_{v}}$ Therefore, $t_{99}=\frac{1.784 \gamma_{w} \cdot m_{v} h^{2}}{k}$ $h_{\text {new }}=\frac{h_{\text {old }}}{2} \text { and } k_{\text {new }}=\frac{k_{\text {old }}}{2}$ So $t_{99 n e w}=\frac{1.784 \gamma_{w} \cdot m_{v}\left(\frac{h_{\text {old }}}{2}\right)^{2}}{\frac{k_{\text {old }}}{2}}=\frac{1.784 \gamma_{w} \cdot m_{v} h_{\text {old }}{ }^{2}}{2 k_{\text {old }}}=\frac{t_{\text {99old }}}{2}$ 2) As in $2 \mathrm{c}, 0.21$ or 0.24 years	New location. $\begin{aligned} & t_{\text {99new }} \\ & =\frac{t_{\text {g9old }}}{2} \end{aligned}$ Or 0.2 years
2 e	Similar approach to above: Drainage path is twice as long, i.e. $2 h_{\text {old }}$ $t_{\text {99new }}=\frac{1.784 \gamma_{w} \cdot m_{v}\left(2 h_{\text {old }}\right)^{2}}{k}=\frac{4 \times 1.784 \gamma_{w} \cdot m_{v} h_{\text {old }}{ }^{2}}{k}$	Proved.

Name: \qquad Student number: 9999

Question No.	Workings	Answer
3a	Recognise that there is one stream line at the edge of the sheet pile and also one at the base. Potential lines include both soil surfaces. Option 1 Stream lines $=5$ Potential lines $=8$ Option 2 Stream lines $=5$ Potential lines $=10$	$\begin{aligned} & \underline{\text { Option } 1} \\ & \hline \text { SLs }=5 \\ & \text { PLs }=8 \\ & \\ & \begin{array}{l} \text { Option 2 } \\ \hline \text { SLs }=5 \\ \text { PLs }=10 \end{array} \end{aligned}$
3b	Flow into the excavation can be calculated via: $Q=2 \frac{n_{s}}{n_{n}} k \Delta h B$ note 2 is from symmetry. Option 1 - stream bands 3.5 or 4 is ok (half in centre), 7 potential bands $\begin{aligned} & \overline{Q_{1}}=2 \times \frac{3.5}{7} 2.9 \times 10^{-5} \times 7 B=0.000203 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\ & Q_{1}=0.731 \mathrm{~m}^{3} / \text { hour } / \mathrm{m} \end{aligned}$ Option 2 - stream bands 3.5 or 4 is ok (half in centre), 9 potential bands $\begin{aligned} & Q_{2}=2 \times \frac{3.5}{9} 2.9 \times 10^{-5} \times 7 B=0.000158 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\ & Q_{2}=0.568 \mathrm{~m}^{3} / \text { hour } / \mathrm{m} \end{aligned}$	$\begin{aligned} & Q_{1}=0.731 \\ & m^{3} / \text { hour } / \\ & m \\ & \\ & Q_{2}=0.568 \\ & m^{3} / \text { hour / } \\ & m \end{aligned}$
3 c	Critical point for liquefaction is at the downstream end of the flow path. Two methods: calculate effective stress or calculate critical gradient. Critical gradient is $i_{\text {crit }}=-\frac{\gamma_{s}-\gamma_{w}}{\gamma_{w}}=-\frac{19-10}{10}=-0.9$ Option 1 Gradient over last square is: $\begin{aligned} & \mathrm{dH}=7 / 7=1 \mathrm{~m} \\ & \mathrm{dz}=-0.5 \mathrm{~m} \end{aligned}$ $\mathrm{dH} / \mathrm{dz}=-2 \underline{\text { Risk }}$ of liquefaction Option 2 Gradient over last square is: $\begin{aligned} & \mathrm{dH}=7 / 9=0.78 \mathrm{~m} \\ & \mathrm{dz}=-1.0 \mathrm{~m} \end{aligned}$ $\mathrm{dH} / \mathrm{dz}=-0.78$ No risk of liquefaction Method for checking effective stress: Option 1 Total stress at base of last square $=0.5 \times 19=9.5 \mathrm{kPa}$ PWP due to gravity $=0.5 \times 10=5 \mathrm{kPa}$ PWP due to flow $=\mathrm{dH} \gamma_{\mathrm{w}}=1 \times 10=10 \mathrm{kPa}$ Effective stress $=9.5-(5+10)=-5.5 \mathrm{kPa}<0$ therefore at risk.	Yes, option 1.

Question No.	Workings	Answer
4a	$\mathrm{n}=\mathrm{V}_{\mathrm{v}} / \mathrm{V}$ Volume of sample, $V=225 \times 50^{2} \times \pi / 4=4.42 \times 10^{5} \mathrm{~mm}^{3}$ $=0.000442 \mathrm{~m}^{3}$ Volume of solid from water $=0.197 / 1000=0.000197 \mathrm{~m}^{3}$ Volume of voids $=0.000442-0.000197=0.000245 \mathrm{~m}^{3}$ $\mathrm{n}=0.000245 / 0.000442=0.554$	$\begin{aligned} & \mathrm{n}=0.554 \text { or } \\ & 55.4 \% \end{aligned}$
4b	Mass of saturated soil $=612+0.000245 \times 1000 \times 1000=857 \mathrm{~g}$ Weight $=8.57 \mathrm{~N}$ or 0.00857 kN Saturated volumetric weight, $\gamma=0.00857 / 0.000442=19.4 \mathrm{kN} / \mathrm{m}^{3}$ Mass of dry soil $=612 \mathrm{~g}=0.00612 \mathrm{kN}$ Saturated volumetric weight, $\gamma_{\mathrm{d}}=0.00612 / 0.000442=13.9$ $\mathrm{kN} / \mathrm{m}^{3}$	$\begin{aligned} & \gamma=18.3 \\ & \mathrm{kN} / \mathrm{m}^{3} \end{aligned}$ $\begin{aligned} & \gamma_{\mathrm{d}}=13.9 \\ & \mathrm{kN} / \mathrm{m}^{3} \end{aligned}$
4c	Degree of saturation, $S=V_{w} / V_{v}$ Initial water mass $=721-612=109 \mathrm{~g}=0.109 \mathrm{~kg}$ Initial water volume $=0.109 / 1000=0.000109 \mathrm{~m}^{3}$ $S=0.000109 / 0.000245=0.445 \text { or } 44.5 \%$	$\begin{aligned} & S=0.445 \text { or } \\ & 44.5 \% \end{aligned}$
4d	Volume of soil particles $=0.000197 \mathrm{~m}^{3}$ Density, $\rho_{\mathrm{s}}=\mathrm{M}_{\mathrm{s}} / \mathrm{V}_{\mathrm{s}}=(612 / 1000) / 0.000197=3107 \mathrm{~kg} / \mathrm{m}^{3}$	$\begin{aligned} & \rho_{\mathrm{s}}=3100 \\ & \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$
4e	Void ratio, $e=$ Volume pores / volume solid $=0.000245 / 0.000197=1.24$	$e=1.24$

