DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics II

CT2091

BSc EXAMINATION 2012

ANSWER BOOK

MOCK EXAM I

DATE: 2012

TIME: 3 HOURS

Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each sheet

<u>Clearly identify the answer in the answer box</u>

	Answer
Calculate N factors: $N_{q} = \frac{1 + \sin \phi}{1 - \sin \phi} \exp(\pi \tan \phi)$ $= \frac{1 + \sin 25}{1 - \sin 25} \exp(\pi \tan 25) = 10.66$ $N_{c} = (N_{q} - 1) \cot \phi = 20.72$ $N_{\gamma} = 2(N_{q} - 1) \tan \phi = 9.011$	$N_c = 20.72$ $N_q = 10.66$ $N_{\gamma} = 9.011$
Use the Brinch Hansen method.	
$p_{c} = cN_{c}i_{c}s_{c} + qN_{q}i_{q}s_{q} + \frac{1}{2}\gamma'BN_{\gamma}i_{\gamma}s_{\gamma}$ No inclination: $p_{c} = cN_{c}s_{c} + qN_{q}s_{q} + \frac{1}{2}\gamma'BN_{\gamma}s_{\gamma}$ Calculate shape factors: B	FoS = 3.62
$s_q = 1 + \frac{B}{L}\sin\phi = 1.25$	
Overburden, q: $q = \gamma h = 20.5 \times 2 = 41 \ kPa$ $q' = \gamma h - p = 41 - 10 = 31 \ kPa$	
Total allowable, p _c : $p_c = 5 \times 20.72 \times 1.12 + 31 \times 10.66 \times 1.25 + \frac{1}{2} \times 10.5 \times 3 \times 9.01 \times 0.82$ $p_c = 646.8 kPa$ Applied load, p: Weight of concrete $(5 \times 3 \times 1) \times 25 = 375 kN$ Weight of soil $(5 \times 3 \times 1) \times 20.5 = 307.5 kN$ Applied load = 2000 kN Total = 375 + 307.5 + 2000 = 2682.5 kN Total / area = 2682.5 / 15 = 178.8 kPa FoS = 646.8/178.8 = 3.62	
	$N_{q} = \frac{1 + \sin \phi}{1 - \sin \phi} \exp(\pi \tan \phi)$ $= \frac{1 + \sin 25}{1 - \sin 25} \exp(\pi \tan 25) = 10.66$ $N_{c} = (N_{q} - 1)cot \phi = 20.72$ $N_{\gamma} = 2(N_{q} - 1)tan \phi = 9.011$ Use the Brinch Hansen method. $p_{c} = cN_{c}i_{c}s_{c} + qN_{q}i_{q}s_{q} + \frac{1}{2}\gamma'BN_{\gamma}i_{\gamma}s_{\gamma}$ No inclination: $p_{c} = cN_{c}s_{c} + qN_{q}s_{q} + \frac{1}{2}\gamma'BN_{\gamma}s_{\gamma}$ Calculate shape factors: $s_{c} = 1 + 0.2\frac{B}{L} = 1.12$ $s_{q} = 1 + \frac{B}{L}sin \phi = 1.25$ $s_{\gamma} = 1 - 0.3\frac{B}{L} = 0.82$ Overburden, q: $q = \gamma h = 20.5 \times 2 = 41 kPa$ $q' = \gamma h - p = 41 - 10 = 31 kPa$ Total allowable, p.: $p_{c} = 646.8 kPa$ Applied load, p: Weight of concrete (5 × 3 × 1) × 25 = 375 kN Weight of soil (5 × 3 × 1) × 20.5 = 307.5 kN Applied load = 2000 kN Total = 375 + 307.5 + 2000 = 2682.5 kN Total / area = 2682.5 / 15 = 178.8 kPa

Question No.	Workings	Answer
2a	Full active and passive forces at failure.	
	Use equations for lateral earth coefficients.	
	$K'_{p} = \frac{1 + \sin\phi'}{1 - \sin\phi'} = 2.46$ $K'_{a} = \frac{1 - \sin\phi'}{1 + \sin\phi'} = 0.405$	Marks for all individual or summed forces
	Active forces:	
	$\frac{1}{2}K_a\gamma'(d+h)^2 = 0.5 \times 0.405 \times 18.5 \times 6.5^2 = 158 kN$	
	Passive forces:	
	From upper triangle (road), $\frac{1}{2}K_p\gamma'd^2 = 0.5 \times 2.46 \times 20 \times 0.5^2 = 6.2kN$	
	From lower rect, $K_p(\gamma' d_{road})d_{soil} = 2.46 \times 20 \times 0.5 \times 1.0 = 24.6kN$	
	From lower triangle, $\frac{1}{2}K_p \gamma' d_{soil}^2 = 0.5 \times 2.46 \times 18.5 \times 1^2 = 22.8kN$	
	Sum of forces = 105.0 kN	
2b	Weight of concrete: $B(h + d)\gamma = 1.75 \times 6.5 \times 25 = 284 \text{ kN}$ per metre	FoS = 1.12
	Resistance to sliding: $R = W \tan \delta' = 118 \ kN$	
	FoS = 118 / 105 = 1.12	
2c	Include the effects of water by using effective stresses and then adding on forces due to water. Active forces:	FoS = 0.48 (fails)
	$\frac{1}{2}K_a\gamma'(d+h)^2 = 0.5 \times 0.405 \times (18.5 - 10) \times 6.5^2 = 73 kN$	
	$\frac{1}{2}K_0\gamma'(d+h)^2 = 0.5 \times 1 \times 10 \times 6.5^2 = 211 kN$	
	Passive forces:	
	From upper triangle (road), $\frac{1}{2}K_p\gamma'd^2 = 0.5 \times 2.46 \times 10 \times 0.5^2 = 3.1kN$	
	From lower rect, $K_p(\gamma' d_{road})d_{soil} = 2.46 \times 10 \times 0.5 \times 1.0 = 12.3kN$	
	From lower triangle, $\frac{1}{2}K_p\gamma' d_{soil}^2 = 0.5 \times 2.46 \times 8.5 \times 1^2 = 10.5kN$	
	$\frac{1}{2}K_0\gamma'(d)^2 = 0.5 \times 1 \times 10 \times 1.5^2 = 11.25 kN$	
	Sum of forces = 247.0 kN	
	FoS = 118 / 247 = 0.48 (fails)	

Question	Workings	Answer	
No. 3a			
	$\gamma = 19 \text{ kN/m}^3$ $\phi = 30^\circ$ $c = 0 \text{ kPa}$ $\delta = 20^\circ$ $\phi = 21 \text{ kN/m}^3$ $\phi = 30^\circ$ $c = 0 \text{ kPa}$ $\delta = 30^\circ$		
	$\delta = 20^{\circ}$		
	For a conservative design maximise active pressure, minimise passive and minimise frictional resistance.		
3b	Lateral forces:		
	Active earth pressure coefficients from table (can check from eq):		
		$Q_{ph} =$	
	$K'_p = 4.45$	$= 6940 \ kN \ /m$	
	$K'_a = 0.385$	$Q_{ah} = 796 \ kN \ /m$	
	Forces must be in effective stresses.		
	Passive force, $Q_p = \frac{1}{2}K_p(\gamma - \gamma_w)d^2 = \frac{1}{2} \times 4.45 \times (19 - 10) \times 20^2 = 8014 \text{ kN /m}$		
	Active force, $Q_a = \frac{1}{2}K_a(\gamma - \gamma_w)d^2 = \frac{1}{2} \times 0.385 \times (21 - 10) \times 20^2 = 847 \ kN \ /m$		
	Note we can ignore the forces due to water as they are equal on both sides.		

	We need to resolve to the horizontal direction: $Q_{h} = Qsin (\alpha - \delta)$ $Q_{ah} = 847 sin (80 - 30) = 796 kN$ $Q_{h} = 8014 sin (8020) = 6940 kN$	
3c	Balance of forces (per m) $7500 - 6940 + 796 = 1356$ kN Resistance from the ground must equal: $1356*2 = 2712$ kN Resistance from sliding = W tan δ Therefore, W = 2712 / tan 20 = 7451 kN Volume = 7451 / $25 = 298$ m ³ Test of approx. width is 298 / $20 = 15$ m (seems rather high, so could increase depth or foundation width)	298m ³

Question No.	Workings			Answer
4a	$\Delta p = B \Delta \sigma_3$ as there is	no difference betwee	n principle stresses	See table
	Cell pressure, kPa	Pore water pressure, kPa	В	
	100	0		
	200	82	0.82	
	300	177	0.95	
	400	277	1.00	
	500	377	1.00	
4b	Note that B=1 for all a compressed and found		n stages as air has been	$D_f = 2737 kPa$
	Can draw all stages to loading step to failure		hat is happening. Final	l
	$p_{f} = 200 + AB \Delta D_{f}$ $A = -0.2$ $p_{f} = 200 + -0.2\Delta D_{f}$ $\sigma'_{3} = \sigma_{3} - p = 700 - \sigma'_{1} = \sigma_{1} - p = 700 + C$ $= 650$	$150 + \Delta D_f - 200 + $ $+ 1.2\Delta D_f$	$0.2\Delta D_f$	
	Also failure of materia	al is defined by (noting	g c'=0)	
	$\sigma_1' = \sigma_3' \frac{1 + \sin \phi'}{1 - \sin \phi'}$			
		$\sigma_1' = 3.69 \sigma_3'$		
	650 + 1	$.2\Delta D_f = 3.69 (500 +$	$-0.2\Delta D_f)$	
	$D_f =$	$\Delta D_f = 2587 \ kPa$ = 2587 + 150 = 273	7 kPa	