DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Civil Engineering and Geosciences

Soil Mechanics II

CT2091

BSc EXAMINATION 2012

ANSWER BOOK

MOCK EXAM I

DATE: 2012
TIME: 3 HOURS

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet
Clearly identify the answer in the answer box

Question No.	Workings	Answer
1a	Calculate N factors: $\begin{aligned} N_{q}=\frac{1+\sin \phi}{1-\sin \phi} & \exp (\pi \tan \phi) \\ & =\frac{1+\sin 25}{1-\sin 25} \exp (\pi \tan 25)=10.66 \\ N_{c}= & \left(N_{q}-1\right) \cot \phi=20.72 \\ N_{\gamma}= & 2\left(N_{q}-1\right) \tan \phi=9.011 \end{aligned}$	$\begin{aligned} & N_{c}=20.72 \\ & N_{q}=10.66 \\ & N_{\gamma}=9.011 \end{aligned}$
1b	Use the Brinch Hansen method. $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ No inclination: $p_{c}=c N_{c} s_{c}+q N_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} s_{\gamma}$ Calculate shape factors: $\begin{aligned} & s_{c}=1+0.2 \frac{B}{L}=1.12 \\ & s_{q}=1+\frac{B}{L} \sin \phi=1.25 \\ & s_{\gamma}=1-0.3 \frac{B}{L}=0.82 \end{aligned}$ Overburden, q: $\begin{gathered} q=\gamma h=20.5 \times 2=41 \mathrm{kPa} \\ q^{\prime}=\gamma h-p=41-10=31 \mathrm{kPa} \end{gathered}$ Total allowable, p_{c} : $\begin{gathered} p_{c}=5 \times 20.72 \times 1.12+31 \times 10.66 \times 1.25+\frac{1}{2} \times 10.5 \times 3 \times 9.01 \times 0.82 \\ p_{c}=646.8 \mathrm{kPa} \end{gathered}$ Applied load, p: Weight of concrete $(5 \times 3 \times 1) \times 25=375 \mathrm{kN}$ Weight of soil $(5 \times 3 \times 1) \times 20.5=307.5 \mathrm{kN}$ Applied load $=2000 \mathrm{kN}$ Total $=375+307.5+2000=2682.5 \mathrm{kN}$ Total $/$ area $=2682.5 / 15=178.8 \mathrm{kPa}$ $\mathrm{FoS}=646.8 / 178.8=3.62$	$\mathrm{FoS}=3.62$

1c	Use the Brinch Hansen method. $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ In this case need the inclinations factors: Horizontal stress, t: $\begin{gathered} t=\frac{F}{A}=\frac{600}{15}=40 \mathrm{kPa} \\ i_{c}=1-\frac{t}{c+p \tan \phi}=0.55 \\ (\mathrm{p}=2000 / 15+25 \mathrm{x} 1+20.5 \mathrm{x} 1=179 \mathrm{kPa}) \\ i_{q}=i_{c}{ }^{2}=0.30 \\ i_{\gamma}=i_{c}{ }^{3}=0.16 \\ p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma} \\ p_{c}=217.0 \mathrm{kPa} \end{gathered}$	$\mathrm{FoS}=1.2$

Question No.	Workings	Answer
2a	Full active and passive forces at failure. Use equations for lateral earth coefficients. $\begin{aligned} K_{p}^{\prime} & =\frac{1+\sin \phi^{\prime}}{1-\sin \phi^{\prime}}=2.46 \\ K_{a}^{\prime} & =\frac{1-\sin \phi^{\prime}}{1+\sin \phi^{\prime}}=0.405 \end{aligned}$ Active forces: $\frac{1}{2} K_{a} \gamma^{\prime}(d+h)^{2}=0.5 \times 0.405 \times 18.5 \times 6.5^{2}=158 \mathrm{kN}$ Passive forces: From upper triangle (road), $\frac{1}{2} K_{p} \gamma^{\prime} d^{2}=0.5 \times 2.46 \times 20 \times 0.5^{2}=6.2 \mathrm{kN}$ From lower rect, $K_{p}\left(\gamma^{\prime} d_{\text {road }}\right) d_{\text {soil }}=2.46 \times 20 \times 0.5 \times 1.0=24.6 \mathrm{kN}$ From lower triangle, $\frac{1}{2} K_{p} \gamma^{\prime} d_{\text {soil }}{ }^{2}=0.5 \times 2.46 \times 18.5 \times 1^{2}=22.8 \mathrm{kN}$ Sum of forces $=105.0 \mathrm{kN}$	Marks for all individual or summed forces
2b	Weight of concrete: $B(h+d) \gamma=1.75 \times 6.5 \times 25=284 k N$ per metre Resistance to sliding: $R=W \tan \delta^{\prime}=118 k N$ $\mathrm{FoS}=118 / 105=1.12$	$\mathrm{FoS}=1.12$
2c	Include the effects of water by using effective stresses and then adding on forces due to water. Active forces: $\begin{aligned} & \frac{1}{2} K_{a} \gamma^{\prime}(d+h)^{2}=0.5 \times 0.405 \times(18.5-10) \times 6.5^{2}=73 \mathrm{kN} \\ & \frac{1}{2} K_{0} \gamma^{\prime}(d+h)^{2}=0.5 \times 1 \times 10 \times 6.5^{2}=211 \mathrm{kN} \end{aligned}$ Passive forces: From upper triangle (road), $\frac{1}{2} K_{p} \gamma^{\prime} d^{2}=0.5 \times 2.46 \times 10 \times 0.5^{2}=3.1 \mathrm{kN}$ From lower rect, $K_{p}\left(\gamma^{\prime} d_{\text {road }}\right) d_{\text {soil }}=2.46 \times 10 \times 0.5 \times 1.0=12.3 \mathrm{kN}$ From lower triangle, $\frac{1}{2} K_{p} \gamma^{\prime} d_{\text {soil }}{ }^{2}=0.5 \times 2.46 \times 8.5 \times 1^{2}=10.5 \mathrm{kN}$ $\frac{1}{2} K_{0} \gamma^{\prime}(d)^{2}=0.5 \times 1 \times 10 \times 1.5^{2}=11.25 \mathrm{kN}$ Sum of forces $=247.0 \mathrm{kN}$ $\mathrm{FoS}=118 / 247=0.48$ (fails)	$\begin{aligned} & \text { FoS = } 0.48 \\ & \text { (fails) } \end{aligned}$

Question No.	Workings	Answer
3a	$\begin{array}{ll} \gamma=19 \mathrm{kN} / \mathrm{m}^{3} \\ \phi=30^{\circ} & \\ \mathrm{c}=0 \mathrm{kPa} \\ \delta=20^{\circ} & \begin{array}{l} \gamma=21 \mathrm{kN} / \mathrm{m}^{3} \\ \phi=30^{\circ} \\ \mathrm{c}=0 \mathrm{kPa} \\ \delta=30^{\circ} \end{array} \\ & \\ \delta \end{array}$ For a conservative design maximise active pressure, minimise passive and minimise frictional resistance.	
3 b	Lateral forces: Active earth pressure coefficients from table (can check from eq): $\begin{gathered} K_{p}^{\prime}=4.45 \\ K_{a}^{\prime}=0.385 \end{gathered}$ Forces must be in effective stresses. Passive force, $Q_{p}=\frac{1}{2} K_{p}\left(\gamma-\gamma_{w}\right) d^{2}=\frac{1}{2} \times 4.45 \times(19-10) \times 20^{2}=$ $8014 \mathrm{kN} / \mathrm{m}$ Active force, $Q_{a}=\frac{1}{2} K_{a}\left(\gamma-\gamma_{w}\right) d^{2}=\frac{1}{2} \times 0.385 \times(21-10) \times 20^{2}=$ $847 \mathrm{kN} / \mathrm{m}$ Note we can ignore the forces due to water as they are equal on both sides.	$\begin{aligned} & Q_{p h}= \\ & =6940 \mathrm{kN} / \mathrm{m} \\ & Q_{a h} \\ & =796 \mathrm{kN} / \mathrm{m} \end{aligned}$

	We need to resolve to the horizontal direction: $\begin{gathered} Q_{h}=Q \sin (\alpha-\delta) \\ Q_{a h}=847 \sin (80-30)=796 \mathrm{kN} \\ Q_{h}=8014 \sin (80--20)=6940 \mathrm{kN} \end{gathered}$	
3c	Balance of forces (per m) 7500-6940 $+796=1356 \mathrm{kN}$ Resistance from the ground must equal: $1356 * 2=2712 \mathrm{kN}$ Resistance from sliding $=\mathrm{W} \tan \delta$ Therefore, $\mathrm{W}=2712 / \tan 20=7451 \mathrm{kN}$ Volume $=7451 / 25=298 \mathrm{~m}^{3}$ Test of approx. width is $298 / 20=15 \mathrm{~m}$ (seems rather high, so could increase depth or foundation width)	$298 \mathrm{~m}^{3}$

Question No.	Workings			Answer
4a	$\Delta p=B \Delta \sigma_{3}$ as there is no difference between principle stresses			See table
	Cell pressure, kPa	Pore water pressure, kPa	B	
	100	0		
	200	82	0.82	
	300	177	0.95	
	400	277	1.00	
	500	377	1.00	
4b	Note that $\mathrm{B}=1$ for all additional compression stages as air has been compressed and found. Can draw all stages to build up picture of what is happening. Final loading step to failure looks like: $\begin{aligned} & A=-0.2 \\ & p_{f}=200+-0.2 \Delta D_{f} \\ & \sigma_{3}^{\prime}=\sigma_{3}-p=700-200+0.2 \Delta D_{f}=500+0.2 \Delta D_{f} \\ & \sigma_{1}^{\prime}=\sigma_{1}-p=700+150+\Delta D_{f}-200+0.2 \Delta D_{f} \\ & \quad=650+1.2 \Delta D_{f} \end{aligned}$ Also failure of material is defined by (noting $c^{\prime}=0$) $\begin{gathered} \sigma_{1}^{\prime}=\sigma_{3}^{\prime} \frac{1+\sin \phi^{\prime}}{1-\sin \phi^{\prime}} \\ \sigma_{1}^{\prime}=3.69 \sigma_{3}^{\prime} \\ 650+1.2 \Delta D_{f}=3.69\left(500+0.2 \Delta D_{f}\right) \\ \Delta D_{f}=2587 \mathrm{kPa} \\ D_{f}=2587+150=2737 \mathrm{kPa} \end{gathered}$			$\begin{aligned} & D_{f} \\ & =2737 \mathrm{kPa} \end{aligned}$

