DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics I - MOCK EXAM I

CT1091

BSc EXAMINATION 2012

ANSWER BOOK

FOURTH PERIOD

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name on each sheet
Clearly identify the answer in the answer box

Name: P Vardon Student number: 9999

CT1091

Question No.	Workings	Answer
1a	From inspection, assuming that river is connected to permeable sand and sand is significantly more permeable than the clay, i.e. an upward flow problem:	1.5 m excavation
1b	Specific discharge, $q(\mathrm{~m} / \mathrm{s})$, is $q=-k \frac{d h}{d L}=-3.6 \times 10^{-8} \frac{(1.5-2.5)}{1.5}=2.4 \times 10^{-8} \mathrm{~m} / \mathrm{s}$ Discharge $\left(\mathrm{m}^{3} / \mathrm{s}\right)=\mathrm{qA}=2.4 \times 10^{-8} \times 6 \times 150=0.0000216$ $0.0000216 \times 3600=0.078 \mathrm{~m}^{3} /$ hour	$0.078 \mathrm{~m}^{3}$
1c	Liquefaction can occur when effective stress equals zero. Total stresses at the base of the excavation $=(4-\mathrm{d}) \times 19$ Where d is the depth of excavation. Pore water pressure in the excavation $=(4-1.5) \times 10=25 \mathrm{kN} / \mathrm{m}^{2}$ Therefore: $\mathrm{d}=4-(25 / 19)=2.7 \mathrm{~m}$	2.7 m
1d	Again, liquefaction can occur when effective stress equals zero. Total stresses at the base of the excavation $=(4-2.5) \times 19=28.5$ $\mathrm{kN} / \mathrm{m}^{2}$ Where d is the depth of excavation. Critical pore water pressure in the excavation $=\left(4-d_{w}\right) \times 10$ Therefore: $\mathrm{d}_{\mathrm{w}}=4-(28.5 / 10)=1.15 \mathrm{~m}$	1.15 m

Name: \qquad Student number: 9999
CT1091

Question No.	Workings	Answer
2a	$\begin{aligned} & \gamma=\mathrm{W} / \mathrm{V} \\ & \mathrm{~W}=\mathrm{W}(\mathrm{~kg}) * 10=557 / 1000 * 10=5.57 \mathrm{~N} \\ & \mathrm{~V}=300 \times \pi \times 40^{2} / 4=376990 \mathrm{~mm}^{3}=0.000377 \mathrm{~m}^{3} \\ & \gamma=5.57 / 0.000377=14775 \mathrm{~N} / \mathrm{m}^{3}=14.8 \mathrm{kN} / \mathrm{m}^{3} \end{aligned}$	$14.8 \mathrm{kN} / \mathrm{m}^{3}$
2b	Clay on sieve size $1 \mu \mathrm{~m}$, Silt on sieve size $2 \mu \mathrm{~m}$, Sand above Therefore $\mathrm{V}_{\text {clay }}=17 \mathrm{ml}, \mathrm{W}_{\text {clay }}=32 / 1000 * 10=0.32 \mathrm{~N}$ $\begin{aligned} & \mathrm{V}_{\text {silt }}=35 \mathrm{ml}, \mathrm{~W}_{\text {silt }}=78 / 1000 * 10=0.78 \mathrm{~N} \\ & \mathrm{~V}_{\text {sand }}=(61+63+12+5)=141 \mathrm{ml}, \mathrm{~W}_{\text {sand }}=(117+133+28+9) \\ & / 1000 * 10=2.87 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {clay }}=17 \mathrm{ml} \\ & \mathrm{~W}_{\text {clay }}=0.32 \mathrm{~N} \\ & \mathrm{~V}_{\text {silt }}=35 \mathrm{ml}, \\ & \mathrm{~W}_{\text {silt }}=0.78 \mathrm{~N} \\ & \\ & \mathrm{~V}_{\text {sand }}=141 \mathrm{ml} \\ & \mathrm{~W}_{\text {sand }}=2.87 \mathrm{~N} \end{aligned}$
2c	$\begin{aligned} & \text { Mass of Peat }=502-397=105 \mathrm{~g} \\ & \mathrm{~V}=105 / 1000 / 1100 \times 100^{3}=95.5 \mathrm{ml} \\ & \%_{\text {peat }}=95.5 / 377 \times 100=25.3 \% \\ & \%_{\text {sand }}=141 / 377 \times 100=37.4 \% \\ & \\ & \text { Mass of water }=557-502=55 \mathrm{~g} \\ & \mathrm{~V}=55 \times 1=55 \mathrm{ml} \\ & \%_{\text {water }}=55 / 377 \times 100=14.6 \% \\ & \mathrm{~V}=377-(17+35+141+95.5+55)=33.5 \mathrm{ml} \\ & \%_{\text {air }}=33.5 / 337 \times 100=8.9 \% \end{aligned}$	$\begin{aligned} & \%_{\text {peat }}=25.3 \% \\ & \%_{\text {sand }}=37.4 \% \\ & \%_{\text {water }}=14.6 \% \\ & \%_{\text {air }}=8.9 \% \end{aligned}$
2d	$\begin{aligned} & \mathrm{n}=\mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{t}} \\ & =(55+33.5) / 377=0.235 * 100=23.5 \% \end{aligned}$	23.5\%
2 e		
2f	From figure: $\mathrm{D}_{10}=2.5, \mathrm{D}_{60}=102$ $C_{u}=102 / 2.5=41$, Well graded S - sand (or accept Pt - peat) W - well graded	$\begin{aligned} & \mathrm{C}_{\mathrm{u}}=41 \\ & \mathrm{~S} \mathrm{~W} \end{aligned}$

Name: \qquad Student number: 9999 CT1091

Question No.	Workings	Answer
3a		
3b	Mid height of the clay: $\begin{aligned} & \sigma=(225+129) / 2=177 \mathrm{kPa} \\ & \sigma^{\prime}=(100+86.5) / 2=93.25 \mathrm{kPa} \end{aligned}$ After embankment, pwp can dissipate therefore stresses are increase by $3.5 \times 18=63 \mathrm{kPa}$ at all locations. Assumption is 'wide' embankment. $\begin{aligned} & \sigma=177+63=240 \mathrm{kPa} \\ & \sigma^{\prime}=93.25+63=156.25 \mathrm{kPa} \end{aligned}$	$\begin{aligned} & \sigma=177 \\ & \mathrm{kPa} \\ & \sigma^{\prime}=93.25 \\ & \mathrm{kPa} \end{aligned}$ After $\sigma=240$ kPa $\sigma^{\prime}=156.25$ kPa
3c	3 layers of 2 m each. Final settlement so no increased pwp or consolidation. Centres of layers (NAP, m): -9.5, -11.5, -13.5 Initial $\sigma^{\prime}=\sigma^{\prime}{ }_{-8.5}+(d) \frac{\sigma^{\prime}{ }_{-14.5}-\sigma^{\prime}{ }_{-8.5}}{6}$ $\sigma_{-9.5}^{\prime}=88.75 \mathrm{kPA}, \sigma_{-11.5}^{\prime}=93.25 \mathrm{kPA}, \sigma_{-13.5}^{\prime}=97.75 \mathrm{kPA}$ Strain: $\varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma^{\prime}}{\sigma^{\prime}}\right)$ $\varepsilon_{-9.5}=\frac{1}{15} \ln \left(\frac{88.75+63}{88.75}\right)=0.036, \varepsilon_{-11.5}=0.034, \varepsilon_{-13.5}=0.033$ Deformation, $u=2 x \varepsilon$ Total deformation $=2 \times\left(\varepsilon_{-13.5}+\varepsilon_{-11.5}+\varepsilon_{-9.5}\right)=0.21 m$	0.21 m

Name: \qquad Student number: 9999

