DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics I – MOCK EXAM I

CT1091

BSc EXAMINATION 2012

ANSWER BOOK

FOURTH PERIOD

Answer ALL Questions (Note that the questions carry unequal marks)

> Other instructions Write your name on each sheet

Clearly identify the answer in the answer box

Question	Workings	Answer
<u>No.</u> 1a	From inspection, assuming that river is connected to permeable sand and sand is significantly more permeable than the clay, i.e. an upward flow problem:	1.5 m excavation
1b	Specific discharge, q (m/s), is $q = -k \frac{dh}{dL} = -3.6 \times 10^{-8} \frac{(1.5 - 2.5)}{1.5} = 2.4 \times 10^{-8} m/s$	0.078 m ³
	Discharge $(m^3/s) = qA = 2.4 \times 10^{-8} \times 6 \times 150 = 0.0000216$ 0.0000216 x 3600 = 0.078 m ³ /hour	
1c	Liquefaction can occur when effective stress equals zero. Total stresses at the base of the excavation = $(4 - d) \times 19$ Where d is the depth of excavation. Pore water pressure in the excavation = $(4 - 1.5) \times 10 = 25 \text{ kN/m}^2$ Therefore:	2.7m
	d = 4 - (25/19) = 2.7m	
1d	Again, liquefaction can occur when effective stress equals zero. Total stresses at the base of the excavation = $(4 - 2.5) \times 19 = 28.5$ kN/m ² Where d is the depth of excavation. Critical pore water pressure in the excavation = $(4 - d_w) \times 10$ Therefore:	1.15m
	$d_w = 4 - (28.5/10) = 1.15m$	

Question	Workings	Answer
No.		
2a	$\gamma = \mathbf{W}/\mathbf{V}$	14.8 kN/m ³
	W = W(kg) * 10 = 557 / 1000 * 10 = 5.57N	14.0 KIV/III
	$V = 300 \text{ x} \pi \text{ x} 40^2 / 4 = 376 990 \text{ mm}^3 = 0.000377 \text{ m}^3$	
	$\gamma = 5.57 / 0.000377 = 14775 \text{ N/m}^3 = 14.8 \text{ kN/m}^3$	
2b	Clay on sieve size 1 μ m, Silt on sieve size 2 μ m, Sand above Therefore V _{clay} = 17 ml, W _{clay} = 32 /1000 * 10 = 0.32 N	
	$V_{silt} = 35 \text{ ml}, W_{silt} = 78 / 1000 * 10 = 0.78 \text{ N}$	$\begin{split} V_{silt} &= 35 \text{ ml}, \\ W_{silt} &= 0.78 \text{ N} \end{split}$
	$V_{sand} = (61+63+12+5) = 141 \text{ ml}, W_{sand} = (117+133+28+9)$ /1000 * 10 = 2.87 N	$V_{sand} = 141 \text{ ml}$ $W_{sand} = 2.87 \text{ N}$
2c	Mass of Peat = $502 - 397 = 105g$ V = $105 / 1000 / 1100 \times 100^3 = 95.5 \text{ ml}$ % _{peat} = $95.5 / 377 \times 100 = 25.3\%$ % _{sand} = $141 / 377 \times 100 = 37.4\%$	$\%_{peat} = 25.3\%$ $\%_{sand} = 37.4\%$ $\%_{water} = 14.6\%$ $\%_{air} = 8.9\%$
	Mass of water = $557 - 502 = 55g$ V = $55x1 = 55$ ml $\%_{water} = 55 / 377 \times 100 = 14.6\%$ V = $377 - (17+35+141+95.5+55) = 33.5$ ml $\%_{air} = 33.5 / 337 \times 100 = 8.9\%$	
2d	$n = V_p / V_t$ = (55+33.5) / 377 = 0.235 * 100 = 23.5%	23.5%
2e	100 90 80 70 60 50 40 30 20 1 10 10 100 1000 10000 size, μm	
2f	From figure: $D_{10} = 2.5$, $D_{60} = 102$ $C_u = 102 / 2.5 = 41$, Well graded	$C_{u} = 41$ S W
	S - sand (or accept Pt – peat) $W - well graded$	

Question No.	Workings	Answer
3a	-50 0 50 100 150 200 250 300 -2 - -7.5 kPa - -6 - -6 - -6 - -6 - -10 - -10 - -12 - -10 - -12 - -10 - -12 - -10 - -12 - -10 - -12 - -10 - -12 - -10 -	
3b	Mid height of the clay: $\sigma = (225+129)/2 = 177 \text{ kPa}$ $\sigma' = (100+86.5)/2 = 93.25 \text{ kPa}$ After embankment, pwp can dissipate therefore stresses are increase by 3.5 x 18 = 63 kPa at all locations. Assumption is 'wide' embankment. $\sigma = 177+63 = 240 \text{ kPa}$ $\sigma' = 93.25 + 63 = 156.25 \text{ kPa}$	$\sigma = 177$ kPa $\sigma' = 93.25$ kPa After $\sigma = 240$ kPa $\sigma' = 156.25$ kPa
Зс	3 layers of 2 m each. Final settlement so no increased pwp or consolidation. Centres of layers (NAP, m): -9.5, -11.5, -13.5 Initial $\sigma' = \sigma'_{-8.5} + (d) \frac{\sigma'_{-14.5} - \sigma'_{-8.5}}{6}$ $\sigma'_{-9.5} = 88.75 \text{ kPA}, \sigma'_{-11.5} = 93.25 \text{ kPA}, \sigma'_{-13.5} = 97.75 \text{ kPA}$ Strain: $\varepsilon = \frac{1}{c_p} \ln \left(\frac{\sigma'}{\sigma'_1}\right)$ $\varepsilon_{-9.5} = \frac{1}{15} \ln \left(\frac{88.75 + 63}{88.75}\right) = 0.036, \varepsilon_{-11.5} = 0.034, \varepsilon_{-13.5} = 0.033$ Deformation, $u = 2x\varepsilon$ Total deformation = $2 \times (\varepsilon_{-13.5} + \varepsilon_{-11.5} + \varepsilon_{-9.5}) = 0.21m$	0.21m

Question No.	Workings						Answer	
4a	Use the f $\sigma_{zz} = p$ $\sigma_{zz2} = 1$	$\sigma_{zz2} = 147$ kPa, $\sigma_{zz7} = 102$ kPa, $\sigma_{zz15} = 42.7$ kPa						
4b	Use the solution $p=150 \text{ x}$ $\sigma_{zz} = \frac{2}{\tau}$ $\sigma_{zz2} = 3$	$\sigma_{zz2} = 354$ kPa, $\sigma_{zz7} = 102$ kPa, $\sigma_{zz15} = 47.7$ kPa						
4c	Pad foun will be si e.g. 2m o P = 150 z $\sigma_{zz} = \frac{3}{2\pi}$ $\sigma_{zz2} = 1$	$\sigma_{zz2} = 1611$ kPa, $\sigma_{zz7} = 131$ kPa, $\sigma_{zz15} = 28.6$ kPa						
4d	Recognise that the stresses calculated in 4b are in the centres of the prescribed layers. Therefore:						6 cm Acceptable	
	Layer centre	σ1	σ _{zz}	Strain	thickness	disp	-	
	2	32	354	0.0094	4	0.037		
	7	112	102	0.0024	6	0.015		
	15	240	47.7	0.0007	10	0.007		
					total=	0.059m		
	Therefore 6 cm so acceptable.							