DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2018

FOURTH PERIOD

DATE: 3 JULY 2017

TIME: 13.30 – 16.30

Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each sheet

<u>Clearly identify the answer in the answer box</u>

CTB2310

Question	Workings	Answer
<u>No.</u> 1a	10 cm 20 cm 15 cm	-15 cm or -0.15 m
	Groundwater head: datum = base of sample (any datum is fine) Groundwater head at the top of the sample: $20 + 10 = 30$ cm Groundwater head at the bottom of the sample: $0 + 15 = 15$ cm	
	Groundwater head difference: 15-30 = -15 cm (full marks also without negative)	
1b	Area of the sample: $\frac{\pi d^2}{4} = 0.00785 m^2$ Specific discharge: $q = -k \frac{dh}{dL}$ Total discharge: $Q = qA$ Hydraulic conductivity: $k = -\frac{Q}{A} / \left(\frac{dh}{dL}\right)$ $\frac{dh}{dL} = \frac{-0.15}{0.2} = -0.75$	1.3 × 10 ⁻⁵ m/s
	$\frac{dL}{dL} = \frac{-0.75}{0.2} = -0.75$ Time, Cum. dt dQ, m ³ dQ/dt, m ³ /s k, m/s s Flow, ml 10 0.06 10 6×10 ⁻⁸ 6×10 ⁻⁹ 1.0×10 ⁻⁶ 100 6.9 90 6.9×10 ⁻⁶ 7.6×10 ⁻⁸ 1.3×10 ⁻⁵	
	500 37.3 400 3.0×10^{-5} 7.6 × 10 ⁻⁸ 1.3 × 10 ⁻⁵	

	Answer is average of last two results. Should ignore the first.	
1c	Datum base of sand layer.	5.5×10^{-6}
	Ground water head at the excavation surface: $7 + 0 = 7m$ Ground water head at the base of the sand: $0 + 10 = 10m$ Groundwater head difference: $7 - 10 = -3 m$	m/s
	Specific discharge: $q = -k \frac{dh}{dL} = -1.3 \times 10^{-5} \frac{(-3)}{7}$ = 5.5 × 10 ⁻⁶ m/s	

CTB2310

-							
			$[\Delta \sigma_3 - v(\Delta \sigma_3)]$	$(\sigma_1 + \Delta \sigma_2)]$			
	For a drained tria						
	$\Delta \sigma_3 = \Delta \sigma_2 = 0$						
	$\Delta \varepsilon_1 = \frac{1}{E} [\Delta \sigma_1]$						
			$\varepsilon_3 = -\frac{1}{E}[v]$	A]			
		Δ8	$\varepsilon_3 = -\frac{1}{E} v$	$\Delta \sigma_1$]			
	From test 2:						
		Axial stress, σ ₁ (kPa)	Axial strain, ε ₁ (-)	E (kPa)			
		600	0				
		675	0.0583	1286.45			
		750	0.1163	1293.10			
		825	0.175	1277.68			
		900	0.267	815.22			
		965	0.376	596.33			
	Elastic part is the		: E ≈ 1280 k	:Pa			
2d	From the pore pre failure. Soil is the consolidated. 'A' value can be consolidated soil,	vrefore likely worked out a	v to be light as 0.95, whi	ly overconso ch would in	lidated or no		

3с	$\varepsilon = \frac{1}{C_p} \ln\left(\frac{\sigma}{\sigma_1}\right)$ $disp = \sum \varepsilon d$								
	depth	initial σ'	d	$d\sigma'$	Strain (-)	Deformation (m)			
	2	62	4	176.2	0.27	1.08			
	6	107	4	128.4	0.16	0.63			
	10	152	4	95.5	0.10	0.39			
					total	2.10			

Question No.	Worki	Answer						
4a	Factor	0.93						
4b	Split in	1.05						
	a widt							
	Result							
	1. aver	rage angles	of point	ts to get m	id-slice ang	le		
	2. dete	ermine heig	ght of slie	ce at mid-j	point (from	slope and	average y	
	coords							
	3. Cal	culate slice	properti	ies, sum ai	nd calculate	F.		
	Slice	Angle to vertical (°)	h at mid- slice	$A = \gamma h cos^2 \alpha$	$B = c + A tan \phi$	$C = B/\cos\alpha$	$D = \\ \gamma h sin \alpha$	
	1	-5.00	(m) 1.76	31.49	14.68	14.47	-2.77	
	2	7.70	4.62	81.67	38.08	38.43	11.14	
	3	20.81	6.07	95.53	44.54	47.65	38.85	
	4	35.30	5.81	69.64	32.47	39.79	60.43	
	5	53.75	2.59	16.31	7.61	12.86 153.5	37.63	
					$\Sigma C =$	$\Sigma D =$	145.28	
4c	•							