DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2018

FOURTH PERIOD

Answer ALL Questions
 (Note that the questions carry unequal marks)
 Other instructions
 Write your name and student number on each sheet

Clearly identify the answer in the answer box

Question No.	Workings	Answer
1a	Groundwater head: datum = base of sample (any datum is fine) Groundwater head at the top of the sample: $20+10=30 \mathrm{~cm}$ Groundwater head at the bottom of the sample: $0+15=15 \mathrm{~cm}$ Groundwater head difference: $15-30=-15 \mathrm{~cm}$ (full marks also without negative)	$\begin{aligned} & -15 \mathrm{~cm} \text { or } \\ & -0.15 \mathrm{~m} \end{aligned}$
1b	Area of the sample: $\frac{\pi d^{2}}{4}=0.00785 \mathrm{~m}^{2}$ Specific discharge: $q=-k \frac{d h}{d L}$ Total discharge: $Q=q A$ Hydraulic conductivity: $k=-\frac{Q}{A} /\left(\frac{d h}{d L}\right)$$\frac{d h}{d L}=\frac{-0.15}{0.2}=-0.75$Time, \boldsymbol{s} Cum. Flow, $\boldsymbol{m l}$ $\mathbf{d t}$ $\mathbf{d Q}, \boldsymbol{m}^{\mathbf{3}}$ $\mathbf{d Q} / \mathbf{d t}, \boldsymbol{m}^{\mathbf{3}} / \boldsymbol{s}$ $\mathbf{k}, \boldsymbol{m} / \boldsymbol{s}$ $\mathbf{1 0}$ 0.06 10 6×10^{-8} 6×10^{-9} 1.0×10^{-6} $\mathbf{1 0 0}$ 6.9 90 6.9×10^{-6} 7.6×10^{-8} 1.3×10^{-5} $\mathbf{5 0 0}$ 37.3 400 3.0×10^{-5} 7.6×10^{-8} 1.3×10^{-5}	$\begin{aligned} & 1.3 \times 10^{-5} \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$

	Answer is average of last two results. Should ignore the first.	
1c	Datum base of sand layer.	5.5×10^{-6} Ground water head at the excavation surface: $7+0=7 \mathrm{~m}$ Ground water head at the base of the sand: $0+10=10 \mathrm{~m}$ Groundwater head difference: $7-10=-3 \mathrm{~m}$
Specific discharge: $q=-k \frac{d h}{d L}=-1.3 \times 10^{-5} \frac{(-3)}{7}$ $=5.5 \times 10^{-6} \mathrm{~m} / \mathrm{s}$		

Question No.	Workings	Answer
2a		
2b	Solve either from principle stresses at failure, using: $\sigma_{1}^{\prime}=\sigma_{3}^{\prime} \tan ^{2}\left(45+\phi^{\prime} / 2\right)+2 c^{\prime} \tan \left(45+\phi^{\prime} / 2\right)$ Or from d^{\prime} and ψ ' parameters. From figure (final points): $\begin{gathered} d^{\prime}=84.688 k P a \\ \psi^{\prime}=7.12^{\circ} \end{gathered}$ From definition of the failure envelope: $\begin{gathered} \sin \phi^{\prime}=\tan \psi^{\prime} \\ \phi^{\prime}=7.18^{\circ} \\ d^{\prime}=c^{\prime} \cos \phi^{\prime} \\ c^{\prime}=85.36 \mathrm{kPa} \end{gathered}$	$\begin{aligned} & \phi^{\prime}=7.18^{\circ} \\ & c^{\prime} \\ & =85.36 \mathrm{kPa} \end{aligned}$
2c	Using the elastic equations (Hooke's Law): $\Delta \varepsilon_{1}=\frac{1}{E}\left[\Delta \sigma_{1}-v\left(\Delta \sigma_{2}+\Delta \sigma_{3}\right)\right]$	$\begin{aligned} & E \\ & \approx 1280 \mathrm{kPa} \end{aligned}$

Question No.	Workings	Answer
3a		
3b	Initial effective stresses via interpolation: $\begin{gathered} \sigma_{2 m}^{\prime}=61.7 \mathrm{kPa} \\ \sigma^{\prime}{ }_{6 m}=107.0 \mathrm{kPa} \\ \sigma_{10 m}^{\prime}=152.3 \mathrm{kPa} \end{gathered}$ This is not a very wide foundation (compared to depths of interest), therefore an elastic solution is needed. Use Flamant's technique for a strip load: $\sigma_{z z}=\frac{2 p}{\pi}\left\{\tan ^{-1}\left(\frac{a}{z}\right)+\frac{a z}{a^{2}+z^{2}}\right\}$ At 2m depth: $\begin{gathered} d{\sigma^{\prime}}_{2 m}=\frac{2 \times 200}{\pi}\left\{\tan ^{-1}\left(\frac{5}{4}\right)+\frac{5 \times 4}{5^{2}+4^{2}}\right\}=176.2 \mathrm{kPa} \\ d{\sigma^{\prime}}_{6 m}=128.4 \mathrm{kPa} \\ d{\sigma_{10 m}^{\prime}}_{10}=95.5 \mathrm{kPa} \end{gathered}$	$\begin{aligned} & \sigma_{2 m}^{\prime} \\ & =62 \mathrm{kPa} \\ & \sigma^{\prime}{ }_{6 m} \\ & =107 \mathrm{kPa} \\ & \sigma_{10 \mathrm{~m}}^{\prime} \\ & =152 \mathrm{kPa} \\ & \\ & d \sigma^{\prime}{ }_{2 m} \\ & =176.2 \mathrm{kPa} \\ & d \sigma_{6 m} \\ & =128.4 \mathrm{kPa} \\ & d \sigma_{10 \mathrm{~m}}^{\prime} \\ & =95.5 \mathrm{kPa} \end{aligned}$

Name:

