DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2018

THIRD PERIOD

DATE: 16 APRIL 2018

TIME: 13.30 - 16.30

Answer ALL Questions

Other instructions Write your name and student number on each sheet

Clearly identify the answer in the answer box

Name: P Vardon Student number: 001

CTB2310

1b	Effective stress at the centre, via interpolation:	$\sigma'_{initial}$ - 315 kPa
	$\sigma' = 285 + \frac{345 - 285}{2} = 315 \ kPa$	$\Delta \sigma'_{exca} = -132 k P a$
	Change in stress is at 10m below the final surface.	- 152 ki u
	Therefore the building is 2z x 2z on Newmark's chart.	$\Delta \sigma'_{const}$ = 216 kPa
	Number of squares is:	
	Complete circles: 6 Squares: $(6x100) + 72 + 24 = 696$ (range of correct is $680 - 710$)	
	Change of effective stress at the end of the excavation: 696 x 0.001 x $(-10x19) = -132$ kPa	
	Change of effective stress at the end of the construction: 696 x $0.001 \text{ x} (500 - 10 \text{ x} 19) = 216 \text{ kPa}$	
1c	Strain, at the end of the excavation, is: $\varepsilon = \frac{1}{c_p} \ln\left(\frac{\sigma}{\sigma_1}\right) = \frac{1}{20} \ln\left(\frac{315-132}{315}\right) = -0.027$ Displacement = -0.027 × 10 = -0.27m	$disp_{exc} = -0.27m$
	Strain, at the end of the construction, is:	$disp_{const} = 0.26m$
	$\varepsilon = \frac{1}{C_p} \ln\left(\frac{\sigma}{\sigma_1}\right) = \frac{1}{20} \ln\left(\frac{216+315}{315}\right) = 0.026m$	
	$Displacement = 0.026 \times 10 = 0.26m$	

Question No.	Workings	Answer
2a	Using the Brinch Hansen method:	$N_q = 3.941$
		$N_c = 10.977$
	$p_c = cN_c i_c s_c + qN_q i_q s_q + \frac{1}{2}\gamma' BN_\gamma i_\gamma s_\gamma$	$N_{\gamma} = 1.576$
	No inclination factors or surcharge due to being at ground level.	
	Therefore, N factors and shape factors are needed. Shape factors also ok to be calculated in Q2b.	
	$N_q = \frac{1 + \sin\phi}{1 - \sin\phi} \exp(\pi \tan\phi) = \frac{1 + \sin 15}{1 - \sin 15} \exp(\pi \tan 15) = 3.941$	
	$N_c = (N_q - 1)cot \ \phi = 10.977$	
	$N_{\gamma} = 2(N_q - 1)\tan\phi = 1.576$	
2h	As no (affective) surcharge.	$B \approx 3.89m$
20		D ** 5.07m
	$p_c = cN_cs_c + \frac{1}{2}\gamma'BN_\gamma s_\gamma$	
	$s_c = 1 + 0.2 \frac{B}{L} = 1.2$	
	$s_{\gamma} = 1 - 0.3 \frac{B}{L} = 0.7$	
	$s_q = 1 + \frac{B}{L}\sin\phi = 1.26(unneeded)$	
	$p_a = \frac{25000}{B^2}$	
	p_c	
	$FOS = \frac{1}{p_a}$	
	Therefore:	
	$25000 \times FOS = cN_c s_c B^2 + \frac{1}{2} \gamma' B^3 N_{\nu} s_{\nu}$	
	$B \approx 3.89m$	
2c	Need to calculate the inclination factors.	1.84
	Horizontal stress, t:	
	$t = \frac{F}{F} = \frac{75 \times 22.5}{-1115 \ kPa}$	
	$A = 3.89 \times 3.89_{t} = 111.5 \text{ m}^{2} \text{ m}^{2}$	
	$i_c = 1 - \frac{1}{c + p \tan \phi} = 0.83$	
	(p = 22500/3.89/3.89 = 1487 kPa)	
	$i_{\nu} = i_c^{3} = 0.57$	
	$p_c = cN_c i_c s_c + \frac{1}{2}\gamma' BN_\gamma i_\gamma s_\gamma = 2736 \ kPa$	
	FoS = 2736/1487 = 1.84	

Question	Workings				An	swer		
No. 3a	Recognis	Recognise that:				c'=	=14.4 kPa	
	$\tau = \sigma_{nf}^{'} tan$	$\tau = \sigma'_{nf} tan\phi + c$				$\phi =$	=6.84°	
	Area is 0	.05x0.0	5 = 0.0025	m^2				
	Stresses	are there	efore:					
		Test	Normal	Peak	Normal	Shear		
		No.	force	shear	stress	stress (1-D-)		
			(IN)	(N)	(кра)	(кра)		
		1	75	45	30	18		
		2	175	57	70	22.8		
	A and the same	-f	41. 4	·				
	And ther	elore wi	ith two tests	5.				
	c'=14.4 l	кРа						
	ϕ =6.84°							
21	<u> </u>	.1	C				,	11010
36	Stresses	Test	efore: Normal	Residual	Normal	Shear	$c' = \phi - \phi$	=11.9 kPa -4 00°
		No	force	shear	stress	stress	$\psi -$	-+.00
		INO.	(N)	force	(kPa)	(kPa)		
		1	75	(N) 35	30	14		
		2	175	42	70	16.8		
	-	2	170	12	10	10.0		
	And ther	efore wi	th two tests	5:				
	c'=11.91	c Pa						
	$\phi = 4.00^{\circ}$							
30								
50	Need to o	calculate	σ_1' and σ_3' .	Easiest is	from:			
	Radius -	τ,	_ 18/	– 18	1 kPa			
	1100105 -	/cos¢	/ cos	6.84 - 10.	INIU			
	Centre =	30 + <i>r</i> a	adius sin ¢	b = 30 + 1	8.1 sin 6.84	4 = 32.1	kPa	
	$\sigma_1 = centre + radius = 50.3$ kPa							
	$\sigma_3 = centre - radius = 14.0$ kPa							

Question	Workings	Answer
No.		
4a	Hooke's law in 3D	$K = \frac{v}{1 - v}$
	$\varepsilon_{zz} = \frac{1}{E} \left[\sigma_{zz}' - \nu \left(\sigma_{xx}' + \sigma_{yy}' \right) \right]$	$\sigma_{zz} = 114 \ kPa$
	$\varepsilon_{xx} = \frac{1}{E} \left[\sigma_{xx}' - \nu \left(\sigma_{yy}' + \sigma_{zz}' \right) \right]$	$\sigma'_{zz} = 54 kPa$
	$\varepsilon_{yy} = \frac{1}{E} \left[\sigma_{yy}' - \nu (\sigma_{xx}' + \sigma_{zz}') \right]$	$\sigma'_{xx} = 29.2 \ kPa$ $\sigma_{xx} = 89.2 \ kPa$
	In confined conditions:	$\sigma_{xx} = 0.02 \text{ km} u$
	$\varepsilon_{yy} = \varepsilon_{xx} = 0$ Therefore:	
	$\sigma_{xx}' = \sigma_{yy}' = \frac{v}{1-v}\sigma_{zz'}$	
	As	
	$\sigma_{xx}' = \sigma_{yy}' = K \sigma_{zz}'$	
	$K = \frac{v}{1 - v}$	
	At 6 m depth:	
	$\sigma_{zz} = 6 \times 19 = 114 \ kPa$ $\sigma'_{zz} = 114 - (6 \times 10) = 54 \ kPa$ $K = \frac{0.35}{1 - 0.35} = 0.54$ $\sigma'_{xx} = 54 \times 0.54 = 29.2 \ kPa$ $\sigma_{xx} = 29.2 + 60 = 89.2 \ kPa$	
4b	For this wall there is friction against the wall, so need to use the full equation or the look-up table.	$K_a = 0.367$ $K_n = 3.47$
	For the active side: $\begin{aligned} \alpha &= 80^{\circ} \\ \beta &= 10^{\circ} \\ \delta &= 20^{\circ} \end{aligned}$	Ρ
	Therefore: $K_a = 0.367$	
	For the passive side: $\beta = -10^{\circ}$	
	$o = -20^{\circ}$ There is no table, so the formula must be used.	
	$K_{p} = \frac{\sin^{2}(\alpha - \varphi)}{\sin^{2}\alpha \sin(\alpha - \delta) \left[1 - \sqrt{\frac{\sin(\varphi - \delta)\sin(\varphi + \beta)}{\sin(\alpha - \delta)\sin(\alpha + \beta)}}\right]^{2}}$ $K_{p} = 3.47$	

Name: P Vardon Student number: 001

CTB2310

4c	Calculate the horizontal stresses:	t = 5.6m
	$Q_{a1} = \frac{1}{2}K_a \gamma'_d h_{Qa1}^2 = \frac{1}{2} \times 0.367 \times 17 \times 2^2 = 12.5 \ kN/m$	
	$Q_{a2} = K_a \gamma'_d h_{Qa2} = 0.367 \times 17 \times 2 \times 4 = 49.9 \ kN/m$	
	$Q_{a3} = \frac{1}{2} K_a \gamma'_a h_{Qa3}^2 = \frac{1}{2} \times 0.367 \times (19 - 10) \times 4^2$	
	$= 26.4 \text{ kN/m}$ $Q_{w1} = \frac{1}{2} \gamma_w h_{Qw1}^2 = \frac{1}{2} \times 10 \times 4^2 = 80 \text{ kN/m}$	
	$Q_{p1} = \frac{1}{2} K_p \gamma'_d d^2 = \frac{1}{2} \frac{3.47 \times 9 \times 0.5^2}{10} = 3.9 \ kN/m$	
	$Q_{w2} = \frac{1}{2} \gamma_w h_{Qw2}^2 = \frac{1}{2} \times 10 \times 0.5^2 = 1.25 \text{ kN/m}$	
	Convert from total to horizontal force:	
	Multiply forces by: $sin(\alpha - \delta)$ Where $\delta = 20^{\circ}$ active, and $\delta = -20^{\circ}$ passive	
	Friction from wall: $R = Wtan\delta = 6 \times (t - 6tan10) \times \gamma_{conc} \times tan20$ $= 54.6t - 57.8$	
	$Q_{slide} = (15.5 + 49.9 + 26.4) \sin(60) + 80 = 169.7 \ kN/m$ $Q_{resist} = 3.9 \sin(100) + 1.25 + R = 5.1 \ kN/m$ $R = 54.6t - 57.8 = \ kN/m$ $Q_{resist} = Q_{slide}FOS$	
	t = 5.6m	
4d	Any two of the following:	
	• Embedding the wall more	
	• Increasing the thickness of the concrete wall	
	Draining the soil	