DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2018

THIRD PERIOD

Question
No.
1a
Workings

1b	Effective stress at the centre, via interpolation: $\sigma^{\prime}=285+\frac{345-285}{2}=315 \mathrm{kPa}$ Change in stress is at 10 m below the final surface. Therefore the building is $2 \mathrm{z} \mathrm{x} \mathrm{2z}$ on Newmark's chart. Number of squares is: Complete circles: 6 Squares: $(6 x 100)+72+24=696$ (range of correct is $680-710$) Change of effective stress at the end of the excavation: $696 \times 0.001 \times(-10 \times 19)=-132 \mathrm{kPa}$ Change of effective stress at the end of the construction: 696 x $0.001 \times(500-10 \times 19)=216 \mathrm{kPa}$	$\begin{aligned} & \sigma^{\prime}{ }_{\text {initial }} \\ & =315 \mathrm{kPa} \end{aligned}$ $\begin{aligned} & \Delta \sigma_{\text {exca }}^{\prime} \\ & =-132 \mathrm{kPa} \end{aligned}$ $\Delta \sigma^{\prime}{ }_{\text {const }}$ $=216 k P a$
1c	Strain, at the end of the excavation, is: $\varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma}{\sigma_{1}}\right)=\frac{1}{20} \ln \left(\frac{315-132}{315}\right)=-0.027$ Displacement $=-0.027 \times 10=-0.27 \mathrm{~m}$ Strain, at the end of the construction, is: $\varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma}{\sigma_{1}}\right)=\frac{1}{20} \ln \left(\frac{216+315}{315}\right)=0.026 \mathrm{~m}$ Displacement $=0.026 \times 10=0.26 \mathrm{~m}$	$\begin{aligned} & \text { disp }_{\text {exc }} \\ & =-0.27 \mathrm{~m} \\ & \\ & \text { disp }_{\text {const }} \\ & =0.26 \mathrm{~m} \end{aligned}$

Question No.	Workings	Answer
2a	Using the Brinch Hansen method: $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ No inclination factors or surcharge due to being at ground level. Therefore, N factors and shape factors are needed. Shape factors also ok to be calculated in Q2b. $\begin{gathered} N_{q}=\frac{1+\sin \phi}{1-\sin \phi} \exp (\pi \tan \phi)=\frac{1+\sin 15}{1-\sin 15} \exp (\pi \tan 15)=3.941 \\ N_{c}=\left(N_{q}-1\right) \cot \phi=10.977 \\ N_{\gamma}=2\left(N_{q}-1\right) \tan \phi=1.576 \end{gathered}$	$\begin{gathered} N_{q}=3.941 \\ N_{c}=10.977 \\ N_{\gamma}=1.576 \end{gathered}$
2b	As no (effective) surcharge: $\begin{gathered} p_{c}=c N_{c} s_{c}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} s_{\gamma} \\ s_{c}=1+0.2 \frac{B}{L}=1.2 \\ s_{\gamma}=1-0.3 \frac{B}{L}=0.7 \\ s_{q}=1+\frac{B}{L} \sin \phi=1.26 \text { (unneeded) } \\ p_{a}=\frac{25000}{B^{2}} \\ \text { FOS }=\frac{p_{c}}{p_{a}} \end{gathered}$ Therefore: $\begin{aligned} 25000 \times F O S & =c N_{c} s_{c} B^{2}+\frac{1}{2} \gamma^{\prime} B^{3} N_{\gamma} S_{\gamma} \\ B & \approx 3.89 \mathrm{~m} \end{aligned}$	$B \approx 3.89 \mathrm{~m}$
2c	Need to calculate the inclination factors. Horizontal stress, t: $\begin{aligned} & t=\frac{F}{A}=\frac{75 \times 22.5}{3.89 \times 3.89}=111.5 \mathrm{kPa} \\ & i_{c}=1-\frac{e_{t}^{c+p \tan \phi}}{c}=0.83 \\ & (\mathrm{p}=22500 / 3.89 / 3.89=1487 \mathrm{kPa}) \end{aligned}$ $\begin{gathered} i_{\gamma}=i_{c}{ }^{3}=0.57 \\ p_{c}=c N_{c} i_{c} s_{c}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}=2736 \mathrm{kPa} \end{gathered}$ $\text { FoS }=2736 / 1487=1.84$	1.84

Question No.	Workings	Answer
3a	Recognise that: $\tau=\sigma_{n f}^{\prime} \tan \phi+c$ Area is $0.05 \times 0.05=0.0025 \mathrm{~m}^{2}$ Stresses are therefore: And therefore with two tests: $\begin{aligned} & c^{\prime}=14.4 \mathrm{kPa} \\ & \phi=6.84^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{c}^{\prime}=14.4 \mathrm{kPa} \\ & \phi=6.84^{\circ} \end{aligned}$
3b	Stresses are therefore: And therefore with two tests: $\begin{aligned} & c^{\prime}=11.9 \mathrm{kPa} \\ & \phi=4.00^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{c}^{\prime}=11.9 \mathrm{kPa} \\ & \phi=4.00^{\circ} \end{aligned}$
3c	Need to calculate σ_{1}^{\prime} and σ_{3}^{\prime}. Easiest is from: $\begin{aligned} & \text { Radius }=\tau / \cos \phi=18 / \cos 6.84=18.1 \mathrm{kPa} \\ & \text { Centre }=30+\text { radius } \sin \phi=30+18.1 \sin 6.84=32.1 \mathrm{kPa} \\ & \sigma_{1}=\text { centre }+ \text { radius }=50.3 \mathrm{kPa} \\ & \sigma_{3}=\text { centre }- \text { radius }=14.0 \mathrm{kPa} \end{aligned}$	

Question No.	Workings	Answer
4a	Hooke's law in 3D $\begin{aligned} & \varepsilon_{z z}=\frac{1}{E}\left[{\sigma_{z z}}^{\prime}-v\left(\sigma_{x x}{ }^{\prime}+\sigma_{y y}{ }^{\prime}\right)\right] \\ & \varepsilon_{x x}=\frac{1}{E}\left[{\sigma_{x x}}^{\prime}-v\left({\sigma_{y y}}^{\prime}+\sigma_{z z}{ }^{\prime}\right)\right] \\ & \varepsilon_{y y}=\frac{1}{E}\left[{\sigma_{y y}}^{\prime}-v\left(\sigma_{x x}{ }^{\prime}+\sigma_{z z}{ }^{\prime}\right)\right] \end{aligned}$ In confined conditions: $\varepsilon_{y y}=\varepsilon_{x x}=0$ Therefore: $\sigma_{x x}^{\prime}=\sigma_{y y}^{\prime}=\frac{v}{1-v} \sigma_{z z \prime}$ As $\begin{gathered} \sigma_{x x}^{\prime}=\sigma_{y y}^{\prime}=K \sigma_{z z}^{\prime} \\ K=\frac{v}{1-v} \end{gathered}$ At 6 m depth: $\begin{gathered} \sigma_{z z}=6 \times 19=114 \mathrm{kPa} \\ \sigma_{z z}^{\prime}=114-(6 \times 10)=54 \mathrm{kPa} \\ K=\frac{0.35}{1-0.35}=0.54 \\ \sigma_{x x}^{\prime}=54 \times 0.54=29.2 \mathrm{kPa} \\ \sigma_{x x}=29.2+60=89.2 \mathrm{kPa} \end{gathered}$	$\begin{aligned} K & =\frac{v}{1-v} \\ \sigma_{z z} & =114 \mathrm{kPa} \\ \sigma_{z z}^{\prime} & =54 \mathrm{kPa} \\ \sigma_{x x}^{\prime} & =29.2 \mathrm{kPa} \\ \sigma_{x x} & =89.2 \mathrm{kPa} \end{aligned}$
4b	For this wall there is friction against the wall, so need to use the full equation or the look-up table. $\alpha=80^{\circ}$ For the active side: $\begin{aligned} & \beta=10^{\circ} \\ & \delta=20^{\circ} \end{aligned}$ Therefore: $K_{a}=0.367$ For the passive side: $\begin{aligned} & \beta=-10^{\circ} \\ & \delta=-20^{\circ} \end{aligned}$ There is no table, so the formula must be used. $\begin{gathered} K_{p}=\frac{\sin ^{2}(\alpha-\varphi)}{\sin ^{2} \alpha \sin (\alpha-\delta)\left[1-\sqrt{\frac{\sin (\varphi-\delta) \sin (\varphi+\beta)}{\sin (\alpha-\delta) \sin (\alpha+\beta)}}\right]^{2}} \\ K_{p}=3.47 \end{gathered}$	$\begin{gathered} K_{a}=0.367 \\ K_{p}=3.47 \end{gathered}$

4c	Calculate the horizontal stresses: $\begin{gathered} Q_{a 1}=\frac{1}{2} K_{a} \gamma_{d}^{\prime} h_{Q a 1}^{2}=\frac{1}{2} \times 0.367 \times 17 \times 2^{2}=12.5 \mathrm{kN} / \mathrm{m} \\ Q_{a 2}=K_{a} \gamma_{d}^{\prime} h_{Q a 2}=0.367 \times 17 \times 2 \times 4=49.9 \mathrm{kN} / \mathrm{m} \\ Q_{a 3}=\frac{1}{2} K_{a} \gamma_{d}^{\prime} h_{Q a 3}^{2}=\frac{1}{2} \times 0.367 \times(19-10) \times 4^{2} \\ =26.4 \mathrm{kN} / \mathrm{m} \\ Q_{w 1}=\frac{1}{2} \gamma_{w} h_{Q w 1}^{2}=\frac{1}{2} \times 10 \times 4^{2}=80 \mathrm{kN} / \mathrm{m} \\ Q_{p 1}=\frac{1}{2} K_{p} \gamma_{d}^{\prime} d^{2}=\frac{1}{2} 3.47 \times 9 \times 0.5^{2}=3.9 \mathrm{kN} / \mathrm{m} \\ Q_{w 2}=\frac{1}{2} \gamma_{w} h_{Q w 2}^{2}=\frac{1}{2} \times 10 \times 0.5^{2}=1.25 \mathrm{kN} / \mathrm{m} \end{gathered}$ Convert from total to horizontal force: Multiply forces by: $\sin (\alpha-\delta)$ Where $\delta=20^{\circ}$ active, and $\delta=-20^{\circ}$ passive Friction from wall: $\begin{aligned} R=W \tan \delta=6 & \times(t-6 \tan 10) \times \gamma_{c o n c} \times \tan 20 \\ & =54.6 t-57.8 \end{aligned}$ $\begin{gathered} Q_{\text {slide }}=(15.5+49.9+26.4) \sin (60)+80=169.7 \mathrm{kN} / \mathrm{m} \\ Q_{\text {resist }}=3.9 \sin (100)+1.25+R=5.1 \mathrm{kN} / \mathrm{m} \\ R=54.6 t-57.8=\mathrm{kN} / \mathrm{m} \\ Q_{\text {resist }}=Q_{\text {slide }} F O S \\ t=5.6 \mathrm{~m} \end{gathered}$	$t=5.6 \mathrm{~m}$
4d	Any two of the following: - Embedding the wall more - Increasing the thickness of the concrete wall - Draining the soil	

