DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2016

THIRD PERIOD

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet
Clearly identify the answer in the answer box

Name:

Question No.	Workings ${ }^{\text {answer }}$
1a	
1b	Intersections of lines are also approximately square. No stream lines touch each other. Sizes of intersections are approximately square.

1c	No unique answer. Based on the figure above: Stream lines $=6+5=11$, Stream intervals $=9$ Potential lines $=12+12=24$, potential intervals $=11($ on both sides) Flow into the excavation can be calculated via: $Q=\frac{n_{s}}{n_{n}} k \Delta h B$ $Q=\frac{4+5}{11} 8 \times 10^{-5} \times 5 \times 1=0.000328 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$ Or $1.18 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m}$	$1.18 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m}$
1d	No unique answer. Based on the figure above: Critical point for liquefaction is at the downstream end of the flow path, where the smallest square is. Two methods: calculate effective stress or calculate critical gradient. Critical gradient is $i_{c r i t}=-\frac{\gamma_{s}-\gamma_{w}}{\gamma_{w}}=-\frac{19-10}{10}=-0.9$ Gradient over last square is: $\begin{aligned} & \mathrm{dH}=5 / 11=0.46 \mathrm{~m} \\ & \mathrm{dz}=-0.5 \mathrm{~m} \\ & \mathrm{dH} / \mathrm{dz}=-0.91 \underline{\text { Risk }} \text { of liquefaction } \end{aligned}$ Method for checking effective stress: Total stress at base of last square $=0.5 \times 19=9.5 \mathrm{kPa}$ PWP due to gravity $=0.5 \times 10=5 \mathrm{kPa}$ PWP due to flow $=\mathrm{dH} \gamma_{\mathrm{w}}=0.46 \times 10=4.6 \mathrm{kPa}$ Effective stress $=9.5-(5+4.6)=-0.1 \mathrm{kPa}<0$ therefore at risk.	At risk.

Name: P Vardon \qquad

Question No.	Workings	Answer
2a		200 - -
2b	By interpolation from above, at the middle of the clay layer, before construction: $\begin{gathered} \sigma_{v}=(127+191) / 2=159 \mathrm{kPa} \\ \sigma_{v}{ }^{\prime}=(81+92) / 2=86.5 \mathrm{kPa} \end{gathered}$ After construction, and after pore water pressures have dissipated both total and effective stresses will increase by the same amount, $5 \times 18=90$ kPa : $\begin{gathered} \sigma_{v}=159+90=249 \mathrm{kPa} \\ \sigma_{v}^{\prime}=86.5+90=176.5 \mathrm{kPa} \end{gathered}$	$\begin{aligned} & \text { Before } \\ & \sigma_{v} \\ & =159 \mathrm{kPa} \\ & \sigma_{v}^{\prime} \\ & =86.5 \mathrm{kPa} \\ & \\ & \text { After } \\ & \sigma_{v} \\ & =249 \mathrm{kPa} \\ & \sigma_{v}^{\prime} \\ & =176.5 \mathrm{kPa} \end{aligned}$
2c	Strain: $\varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma^{\prime}}{\sigma^{\prime}{ }_{1}}\right)$ $\varepsilon=\frac{1}{20} \ln \left(\frac{176.5}{86.5}\right)=0.0357$ Deformation, $u=4 \times \varepsilon$ $=4 \times 0.0357=0.14 \mathrm{~m}$ Consolidation coefficient: $m_{v}=\frac{\Delta \varepsilon}{\Delta \sigma}=\frac{0.0357}{90}=0.0004 \mathrm{kPa}^{-1}$	93 days

Name: P Vardon Student number: 001 CTB2310

Question No.	Workings							Answer
3a	Factor of safety for an infinite slope is:$F=\frac{\tan \phi}{\tan \alpha}=\frac{\tan 25}{0.5}=0.93$							0.93
3b	Split into 5 slices, based upon 6 points given, so that each slice has a width of $B=4 \mathrm{~m}$ Results of calculations in table below. 1. average angles of points to get mid-slice angle 2. determine height of slice at mid-point (from slope and average y coords) 3. Calculate slice properties, sum and calculate F.							1.05
3c		Lower F or 1 is the	SS is clo ritical F		al value. closest to			

Question No.	Workings					Answer$\begin{aligned} & c^{\prime} \\ & =40.6 \mathrm{kPa} \\ & \phi^{\prime}=21.8^{\circ} \end{aligned}$	
4a	Need to calc Area is 0.04 By solving τ be yielded a Can use a gr by 2 points)	te stresses $.04=0.00$ Shear force at failure (N) 265 365 $\sigma_{n f}^{\prime} \tan \phi^{\prime}$ ical metho	failure. m^{2} Normal stress (kPa) 312.5 468.8 c^{\prime} simultan $=40.6 \mathrm{kP}$ but normally	Shear stress at failure (kPa) 165.6 228.1 usly the pa less exact.	rs can ce mark	$\begin{aligned} & c^{\prime} \\ & = \\ & \phi^{\prime} \end{aligned}$	$\begin{aligned} & k P a \\ & 21.8^{\circ} \end{aligned}$
4b							
4c	Using a number of trigonometric methods is possible to determine the principle stresses. Simplest is to calculate the centre and the radius of the Mohr's					$\begin{aligned} & \sigma_{1} \\ & =557.1 \mathrm{kPa} \\ & 55.9^{\circ} \text { to hor. } \end{aligned}$	

	circle:	σ_{3} $=200.4 \mathrm{kPa}$ Radius: $r=\frac{165.6}{\cos \phi^{\prime}}=178.4 \mathrm{kPa}$ Centre: $312.5+165.6 \tan \phi^{\prime}=378.8 \mathrm{kPa}$ $\sigma_{1}=378.8+178.4=557.1 \mathrm{kPa}$ $\sigma_{3}=378.8-178.4=200.4 \mathrm{kPa}$ Angle to horizontal is e.g. the angle marked above in red for σ_{1}.
	Vertical line of triangle is 165.5 kPa, horizontal edge is: $178.4-165.6 \tan \phi^{\prime}=112.1 \mathrm{kPa}$	
Angle to horizontal is: $\tan ^{-1} 165.6 / 112.1=55.9^{\circ}$		
For $\sigma_{3}:$		
$90-55.9=34.1^{\circ}$		

