DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics

CTB2310 / AESB2330

BSc EXAMINATION 2016

THIRD PERIOD

DATE: 12 APRIL 2016

TIME: 13.30 - 16.30

Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each sheet

Clearly identify the answer in the answer box

Question	Workings				Answer			
<u>No.</u> 1a		8.05x10 ⁻⁵ m/s						
	therefore $k = \frac{Q}{A}$. state.							
	Time (seconds)	Cumulative water volume (ml)	$Q = \Delta \mathbf{V} / \Delta t$ (m ³ /s)	k (m/s)				
	0	0						
	10	2	2.0x10 ⁻⁷	2.12x10 ⁻⁵				
	60	40	7.6x10 ⁻⁷	8.06x10 ⁻⁵				
	120	86	7.67x10 ⁻⁷	8.13x10 ⁻⁵				
	180	131	7.5x10 ⁻⁷	7.96x10 ⁻⁵				
1b	Average of (8.13x10 ⁻⁵ , 7.96x10 ⁻⁵ , 8.06x10 ⁻⁵) is 8.05x10 ⁻⁵ m/s. Also accept any of the last 3 in the table for full marks. Image: state of the last 3 in the table for full ma							

1		$1 10 \frac{3}{1}$		
1c	No unique answer. Based on the figure above:	$1.18 m^3 / h / m$		
	Stream lines = $6 + 5 = 11$, Stream intervals = 9 Potential lines = $12 + 12 = 24$, potential intervals = 11 (on both sides)			
	Flow into the excavation can be calculated via:			
	$Q = \frac{n_s}{n_n} k \Delta h B$			
	$Q = \frac{4+5}{11} 8 \times 10^{-5} \times 5 \times 1 = 0.000328 m^3 / s / m$ Or 1.18 m ³ / h /m			
1d	No unique answer. Based on the figure above:	At risk.		
	Critical point for liquefaction is at the downstream end of the flow path, where the smallest square is.			
	Two methods: calculate effective stress or calculate critical gradient.			
	Critical gradient is $i_{crit} = -\frac{\gamma_s - \gamma_w}{\gamma_w} = -\frac{19 - 10}{10} = -0.9$			
	Gradient over last square is: dH = 5/11 = 0.46 m dz = -0.5 m dH/dz = -0.91 Risk of liquefaction			
	Method for checking effective stress: Total stress at base of last square = $0.5 \times 19 = 9.5 \text{ kPa}$ PWP due to gravity = $0.5 \times 10 = 5 \text{ kPa}$ PWP due to flow = dH γ_w = $0.46 \times 10 = 4.6 \text{ kPa}$ Effective stress = $9.5 \cdot (5+4.6) = -0.1 \text{ kPa} < 0$ therefore at risk.			

Question No.	Workings					Answer		
3a	Factor of safety for an infinite slope is:						0.93	
	$F = \frac{\tan \phi}{\tan \alpha} = \frac{\tan 25}{0.5} = 0.93$ Split into 5 slices, based upon 6 points given, so that each slice has							
3b	Split into 5 slices, based upon 6 points given, so that each slice has							1.05
	a widt							
	Result							
	1. ave							
	2. dete	ermine heig	ght of slie	ce at mid-j	point (from	slope and	average y	
	coords	S)						
	3. Calculate slice properties, sum and calculate F.							
	Slice	Angle to vertical (°)	h at mid- slice	$A = \gamma h cos^2 \alpha$	$B = c + Atan \phi$	$C = B/\cos\alpha$	$D = \\ \gamma h sin \alpha$	
	1	-5.00	(m) 1.18	20.99	9.79	9.83	-1.84	
	2	7.70	3.08	54.44	25.39	25.62	7.42	
	3	20.81	4.05	63.68	29.70	31.77	25.90	
	4	35.30	3.87	46.43	21.65	26.53	40.29 25.09	
	5	53.75	1.75	10.87	$\frac{5.07}{\Sigma C} =$	8.58 102.32	23.09	
					20 -	$\Sigma D =$	96.85	
	$F = \frac{\Sigma C}{\Sigma D} = 1.05$							
3c	•	Lower FC	OS is clos	ser to criti	cal value.			
		or				1 is corre	et	
	• 1 is the critical FoS, therefore closest to 1 is correct.							

Question	Workings					Answer		
No.	Need to coloui	ata atraggag a	t failure			-/		
4a	Need to calculate stresses at failure. Area is $0.04 \ge 0.0016 \text{ m}^2$					c' = 40.6 kPa		
		$\phi' = 2$	1.8°					
		Shear	Normal	Shear	-			
	Normal	force at	stress	stress at				
	force (N)	failure (N)	(kPa)	failure (kPa)				
	500	265	312.5	165.6				
	750	365	468.8	228.1	_			
	By solving $ au$ =							
	be yielded as:							
		С	$' = 40.6 \ kPc$ $\phi' = 21.8^{\circ}$	a				
	Can use a grap by 2 points)	bhical method	l, but normall	y less exact.	(reduce mark			
4b								
	400							
	ខ្លា 300							
	ailure (KPa) 005			y = 0.4x + 4	0.625			
	ta 100 −−−−−			pole				
	Shear for ce							
	₹ 100							
		σ3	/		σ			
	00 + 00	100 20	0 300	400 50	00 600	700	800	
				ive stress at failu				
4c	Using a number	σ_1						
	Using a number of trigonometric methods is possible to determine the principle stresses. Simplest is to calculate the centre and the radius of the Mohr's					= 557.1		
						55.9° to	hor.	

Name: P Vardon Student number: 001

CTB2310

• 1	
circle:	σ_3
Radius: $r = \frac{165.6}{\cos \phi'} = 178.4 \ kPa$	= 200.4 kPa 34.1° to hor.
Centre: $312.5 + 165.6 \tan \phi' = 378.8 kPa$	
$\sigma_1 = 378.8 + 178.4 = 557.1 \ kPa$ $\sigma_3 = 378.8 - 178.4 = 200.4 \ kPa$	
Angle to horizontal is e.g. the angle marked above in red for σ_1 .	
Vertical line of triangle is 165.5 kPa, horizontal edge is: $178.4 - 165.6 \tan \phi' = 112.1 kPa$	
Angle to horizontal is: $\tan^{-1} \frac{165.6}{112.1} = 55.9^{\circ}$	
For σ_3 :	
90-55.9 = 34.1°	