DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Civil Engineering and Geosciences

Soil Mechanics II

CT2091

BSc EXAMINATION 2012

ANSWER BOOK

FIRST PERIOD

DATE: 2 November 2012
TIME: $09.00-12.00$

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet

Clearly identify the answer in the answer box

Question No.	Workings	Answer
1a	Dry, clean sand therefore $\mathrm{c}=0$ Also no moisture therefore $\sigma=\sigma^{\prime}$ $\begin{aligned} & \sigma_{v}^{\prime}=\sigma_{n}^{\prime}=250 \mathrm{kPa} \\ & \tau=150 \mathrm{kPa} \end{aligned}$ So $\phi^{\prime}=\tan ^{-1}(150 / 250)=31^{\circ}$ By using right angle triangles: $\begin{gathered} \cos \phi^{\prime}=\frac{\sqrt{\left(150^{2}+250^{2}\right)}}{\sigma_{n, \text { centre }}^{\prime}} \\ \sigma_{n, \text { centre }}^{\prime}=340.2 \mathrm{kPa} \end{gathered}$ Radius of circle (from pythagorus): $\sqrt{340.2^{2}-\left(150^{2}+250^{2}\right)}=174.9 \mathrm{kPa}$	$\phi^{\prime}=31^{\circ}$
1b	Pole is found from a straight line from A to B (as we know the plane on which the stress A is acting). The Pole is point B. Coordinates of the pole $=340.2+(340.2-250), 150 \mathrm{kPa}$ $=430.4,150 \mathrm{kPa}$	$\begin{aligned} & \text { 430.4, } 150 \\ & \mathrm{kPa} \end{aligned}$

Question No.	Workings	Answer
2a	Test 1: $384.2=131.2 x^{2}+2 c^{\prime} x$ Test 2: $563.5=201.5 x^{2}+2 c^{\prime} x$ Then, $179.3=70.3 x^{2}$ and $x=1.5970$ By substitution: c' $=15.5 \mathrm{kPa}$ and $\phi^{\prime}=25.9^{\circ}$	$\begin{aligned} & \mathrm{c}^{\prime}=15.5 \mathrm{kPa} \\ & \phi^{\prime}=25.9^{\circ} \end{aligned}$
2b		$\begin{aligned} & D_{f}=89.4 \\ & k P a \end{aligned}$

	$\begin{gathered} \sigma_{1}^{\prime}=\sigma_{3}^{\prime} \frac{1+\sin \phi^{\prime}}{1-\sin \phi^{\prime}}+2 c^{\prime} \sqrt{\frac{1+\sin \phi^{\prime}}{1-\sin \phi^{\prime}}} \\ \sigma_{1}^{\prime}=2.5511 \sigma_{3}^{\prime}+49.5142 \end{gathered}$ Substituting above yields: $\begin{aligned} & \quad 50+0.728 D_{f}=2.5511\left(50-0.272 D_{f}\right)+49.5142 \\ & D_{f}=89.4 \mathrm{kPa} \end{aligned}$	
2c	 Note exact shape of effective stress path is not important (straight line is ok).	fig
2d		Fig above

$\begin{array}{\|l} \hline \text { Question } \\ \text { No. } \\ \hline \end{array}$	Workings	Answer
3a		
3b	Note no tension anchor so passive horizontal equilibrium must be satisfied by earth pressures. $\begin{gathered} K_{p}^{\prime}=\frac{1+\sin \phi^{\prime}}{1-\sin \phi^{\prime}}=3 \\ K_{a}^{\prime}=\frac{1-\sin \phi^{\prime}}{1+\sin \phi^{\prime}}=0.33 \end{gathered}$ Forces: Active forces: From effective stress soil, $\frac{1}{2} K_{a} \gamma^{\prime}(4+d)^{2}$ From water, $\frac{1}{2} K_{0} \gamma^{\prime}(4+d)^{2}$ Passive forces: From effective stress soil, $\frac{1}{2} K_{p} \gamma^{\prime} d^{2}$ From water, $\frac{1}{2} K_{0} \gamma^{\prime}(3+d)^{2}$ FoS $=1.5$, so must multiply active forces by 1.5 . Therefore equating: $\begin{gathered} 0.75 \times 0.33 \times(20-10) \times(4+d)^{2}+7.5(4+d)^{2}=15 d^{2}+5(3+d)^{2} \\ 0=15 d^{2}+5(3+d)^{2}-9.975(4+d)^{2} \\ 0=10.025 d^{2}-49.8 d-114.6 \end{gathered}$ $\mathrm{d}=6.68 \mathrm{~m}$ (note that this is deeper than h)	$\mathrm{d}=6.68 \mathrm{~m}$

3c	Horizontal equilibrium can include tension anchor, therefore rotation equilibrium is important at the tension anchor. Forces: Active forces and location of action below anchor: From effective stress soil, $\frac{1}{2} K_{a} \gamma^{\prime}(4+3)^{2}=81.7 \mathrm{kN}$ at 2.7 m From water, $\frac{1}{2} K_{0} \gamma^{\prime}(4+3)^{2}=245 \mathrm{kN}$ at 2.7 m Passive forces: From effective stress soil, $\frac{1}{2} K_{p} \gamma^{\prime} 3^{2}=135 \mathrm{kN}$ at 4.0 m From water, $\frac{1}{2} K_{0} \gamma^{\prime}(3+3)^{2}=180 \mathrm{kN}$ at 3.0 m Moments: Overturning: $81.7 \times 2.7+245 \times 2.7=871 \mathrm{kNm}$ Resisting: $135 \times 4+180 \times 3=1080 \mathrm{kNm}$ $\text { FoS = 1080/871 = } 1.24$	FoS $=1.24$
3d	Tension anchor via horizontal equilibrium: $T=81.7+245-135-180=11.7 \mathrm{kN}$	$T=11.7 \mathrm{kN}$

Question No.	Workings	Answer
4a	Use the Brinch Hansen method. $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ No inclination. Calculate N factors: $\begin{gathered} N_{q}=\frac{1+\sin \phi}{1-\sin \phi} \exp (\pi \tan \phi)=6.40 \\ N_{c}=\left(N_{q}-1\right) \cot \phi=14.83 \\ N_{\gamma}=2\left(N_{q}-1\right) \tan \phi=3.93 \end{gathered}$ Calculate shape factors: $\begin{gathered} s_{c}=1+0.2 \frac{B}{L}=1.1 \\ s_{q}=1+\frac{B}{L} \sin \phi=1.17 \\ s_{\gamma}=1-0.3 \frac{B}{L}=0.85 \end{gathered}$ Load: Weight of concrete, $=A \gamma d=20 \times 10 \times 25 \times 2.5=12500 \mathrm{kN}$ Weight of soil, $=A \gamma d=20 \times 10 \times 20 \times 2.5=10000 \mathrm{kN}$ Total $=12500+10000+50000=72500 k N$ (from applied load) Pore pressure, $\mathrm{p}=10 \times 5=50 \mathrm{kPa}$ Load $=\frac{W}{A}-p=\frac{72500}{200}-50=312.5 \mathrm{kPa}$ Surcharge (note effective stress usage), q: $\begin{gathered} q=\gamma^{\prime} d=50 k P a \\ p_{c}=c N_{c} s_{c}+q N_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} s_{\gamma}=705 \mathrm{kPa} \\ \text { FoS }=705 / 313=2.26 \end{gathered}$	FoS $=2.26$
4b	Again use the Brinch Hansen method. $p_{c}=c N_{c} i_{c} s_{c}+q N_{q} i_{q} s_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} i_{\gamma} s_{\gamma}$ In this case need the inclinations factors:	FoS $=1.16$

	Horizontal stress, t: $t=\frac{F}{\text { area }}=\frac{7500}{200}=37.5 \mathrm{kPa}$ Vertical load, p: Total $=12500+10000+30000=52500 k N$ (from applied load) Pore pressure, $\mathrm{p}=10 \times 5=50 \mathrm{kPa}$ [don't penalise for omitting pore pressure in load] Load $=\frac{W}{A}-p=\frac{52500}{200}-50=212.5 \mathrm{kPa}$ $\begin{gathered} i_{c}=1-\frac{t}{c+p \tan \phi}=0.57 \\ i_{q}=i_{c}{ }^{2}=0.33 \\ i_{\gamma}=i_{c}{ }^{3}=0.19 \\ p_{c}=246 \mathrm{kPa} \end{gathered}$ $\text { FoS }=246 / 213=1.16$	
4c	FoS reduces as shape factors, N_{c} and N_{q} reduce (B / L) gets smaller.	reduces

