DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics II

CT2091

BSc EXAMINATION 2012

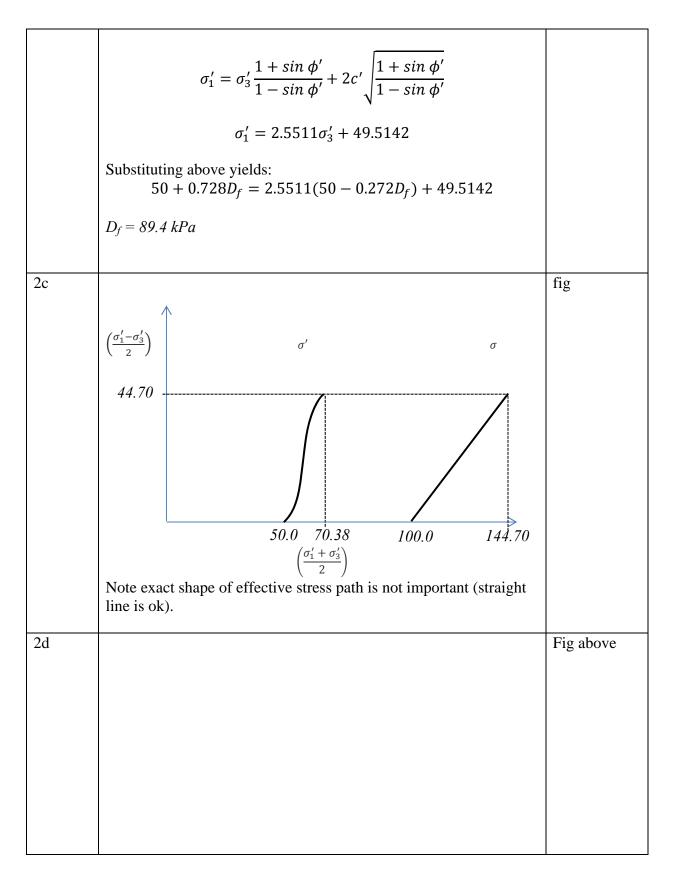
ANSWER BOOK

FIRST PERIOD

DATE: 2 November 2012

TIME: 09.00 – 12.00

Answer ALL Questions (Note that the questions carry unequal marks)


Other instructions Write your name and student number on each sheet

<u>Clearly identify the answer in the answer box</u>

Question No.	Workings	Answer
1a	Dry, clean sand therefore c=0	$\phi' = 31^{\circ}$
	Also no moisture therefore $\sigma = \sigma'$	
	$\sigma'_{v} = \sigma'_{n} = 250 kPa$ $\tau = 150 kPa$	
	i = 150 kP d	
	So $\phi' = tan^{-1} (150/250) = 31^{\circ}$	
	By using right angle triangles:	
	$\cos \phi' = \frac{\sqrt{(150^2 + 250^2)}}{\sigma'_{n,centre}}$	
	$\sigma'_{n,centre} = 340.2 \ kPa$	
	Radius of circle (from pythagorus): $\sqrt{340.2^2 - (150^2 + 250^2)} = 174.9 kPa$	
	350	
	e 250 and a 250 and and and and and and and and and and	
	$\begin{array}{c} \mathbf{F} \\ $	
	Normal effective stress at failure (kPa)	
1b	Pole is found from a straight line from A to B (as we know the	430.4, 150 kPa
	plane on which the stress A is acting). The Pole is point B.	KI U
	Coordinates of the pole = $340.2 + (340.2-250)$, 150 kPa	
	=430.4, 150 kPa	

1c $\sigma'_{1} = 340.2 + 174.9 = 515.1 \, kPa$ $\sigma'_{3} = 340.2 - 174.9 = 165.3 \, kPa$ Directions defined by Mohr's circle and Pole. $\theta_{1} = tan^{-1} \left(\frac{515.1 - 430.4}{150}\right) = 29.5^{\circ}$ σ'_{1} acts at 29.5° to horizontal σ'_{3} acts at 60.5° to horizontal

Question No.	Workings	Answer
No. 2a	Test 1 $Test 1$ $Test 1$ $Test 1$ $Test 1$ $Test 1$ $Test 2$ T	c'=15.5 kPa φ'=25.9°
2b	$Test \ 3 \qquad \begin{array}{c} 100 + D_{f} & \underline{Test \ 3} \\ p_{f} = 50 + 0.85 x 0.32 x \ D_{f} \\ = 50 + 0.272 \ D_{f} \\ \sigma'_{1} = 100 + D_{f} - 50 - 0.272 \ D_{f} \\ \sigma'_{3} = 100 - 50 - 0.272 \ D_{f} \end{array}$	$D_f = 89.4$ kPa

Question No.	Workings	Answer
3a		
3b	Note no tension anchor so passive horizontal equilibrium must be satisfied by earth pressures.	d=6.68 m
	$K'_{p} = \frac{1 + \sin\phi'}{1 - \sin\phi'} = 3$ $K'_{a} = \frac{1 - \sin\phi'}{1 + \sin\phi'} = 0.33$ Forces: Active forces: From effective stress soil, $\frac{1}{2}K_{a}\gamma'(4 + d)^{2}$ From water, $\frac{1}{2}K_{0}\gamma'(4 + d)^{2}$ Passive forces: From effective stress soil, $\frac{1}{2}K_{p}\gamma'd^{2}$	
	From water, $\frac{1}{2}K_0\gamma'(3+d)^2$ FoS = 1.5, so must multiply active forces by 1.5. Therefore equating:	
	$0.75 \times 0.33 \times (20 - 10) \times (4 + d)^{2} + 7.5(4 + d)^{2} = 15d^{2} + 5(3 + d)^{2}$ $0 = 15d^{2} + 5(3 + d)^{2} - 9.975(4 + d)^{2}$ $0 = 10.025d^{2} - 49.8d - 114.6$	
	d=6.68 m (note that this is deeper than h)	

	,
Horizontal equilibrium can include tension anchor, therefore rotation equilibrium is important at the tension anchor.	FoS = 1.24
Forces: Active forces and location of action below anchor: From effective stress soil, $\frac{1}{2}K_a\gamma'(4+3)^2 = 81.7kN$ at 2.7m From water, $\frac{1}{2}K_0\gamma'(4+3)^2 = 245 kN$ at 2.7m	
Passive forces: From effective stress soil, $\frac{1}{2}K_p\gamma'3^2 = 135 \ kN$ at 4.0m From water, $\frac{1}{2}K_0\gamma'(3+3)^2 = 180 \ kN$ at 3.0m	
Moments: Overturning: $81.7 \times 2.7 + 245 \times 2.7 = 871 \ kNm$ Resisting: $135 \times 4 + 180 \times 3 = 1080 \ kNm$	
FoS = 1080/871 = 1.24	
Tension anchor via horizontal equilibrium: $T = 81.7 + 245 - 135 - 180 = 11.7 \ kN$	$T = 11.7 \ kN$
	rotation equilibrium is important at the tension anchor. Forces: Active forces and location of action below anchor: From effective stress soil, $\frac{1}{2}K_a\gamma'(4+3)^2 = 81.7kN$ at 2.7m From water, $\frac{1}{2}K_0\gamma'(4+3)^2 = 245 kN$ at 2.7m Passive forces: From effective stress soil, $\frac{1}{2}K_p\gamma'3^2 = 135 kN$ at 4.0m From water, $\frac{1}{2}K_0\gamma'(3+3)^2 = 180 kN$ at 3.0m Moments: Overturning: $81.7 \times 2.7 + 245 \times 2.7 = 871 kNm$ Resisting: $135 \times 4 + 180 \times 3 = 1080 kNm$ FoS = 1080/871 = 1.24 Tension anchor via horizontal equilibrium:

Question No.	Workings	Answer
4a	Use the Brinch Hansen method.	
	1	FoS = 2.26
	$p_c = cN_c i_c s_c + qN_q i_q s_q + \frac{1}{2}\gamma' BN_\gamma i_\gamma s_\gamma$	
	No inclination.	
	Calculate N factors: $1 + \sin \phi$	
	$N_q = \frac{1 + \sin\phi}{1 - \sin\phi} \exp(\pi \tan\phi) = 6.40$	
	$N_c = (N_q - 1) cot \phi = 14.83$	
	$N_{\gamma} = 2(N_q - 1)\tan\phi = 3.93$	
	Calculate shape factors:	
	$s_c = 1 + 0.2 \frac{B}{L} = 1.1$	
	$s_q = 1 + \frac{B}{L}\sin\phi = 1.17$	
	$s_{\gamma} = 1 - 0.3 \frac{B}{L} = 0.85$	
	Load:	
	Weight of concrete, $= A\gamma d = 20 \times 10 \times 25 \times 2.5 = 12500 \ kN$	
	Weight of soil, $= A\gamma d = 20 \times 10 \times 20 \times 2.5 = 10000 \ kN$	
	Total = 12500 + 10000 + 50000 = 72500 kN (from applied	
	load)	
	Pore pressure, $p = 10 \times 5 = 50 \ kPa$	
	Load $= \frac{W}{A} - p = \frac{72500}{200} - 50 = 312.5 kPa$	
	Surcharge (note effective stress usage), q:	
	$q = \gamma' d = 50 \ kPa$	
	$p_c = cN_cs_c + qN_qs_q + \frac{1}{2}\gamma'BN_\gamma s_\gamma = 705 \ kPa$	
	FoS = 705 / 313 = 2.26	
4b	Again use the Brinch Hansen method.	FoS = 1.16
	$p_c = cN_c i_c s_c + qN_q i_q s_q + \frac{1}{2}\gamma' BN_\gamma i_\gamma s_\gamma$	100 - 1.10
	In this case need the inclinations factors:	

	Horizontal stress, t: $t = \frac{F}{area} = \frac{7500}{200} = 37.5 \ kPa$ Vertical load, p: Total = 12500 + 10000 + 30000 = 52500 \ kN (from applied	
	load)	
	Pore pressure, $p = 10 \times 5 = 50 \ kPa$	
	[don't penalise for omitting pore pressure in load]	
	Load $= \frac{W}{A} - p = \frac{52500}{200} - 50 = 212.5 kPa$	
	$i_c = 1 - \frac{t}{c + p \tan \phi} = 0.57$	
	$i_q = i_c^2 = 0.33$ $i_\gamma = i_c^3 = 0.19$	
	$p_c = 246 \ kPa$	
	FoS = 246/213 = 1.16	
4c	FoS reduces as shape factors, N_{c} and N_{q} reduce (B/L) gets smaller.	reduces