DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics I

CT1091

BSc EXAMINATION 2012

ANSWER BOOK

FOURTH PERIOD

DATE: 27 June 2012

TIME: 09.00 – 12.00

Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each sheet

<u>Clearly identify the answer in the answer box</u>

Question	Workings	Answer
No.		
1a		
	Pressure, KPa 0 50 100 150 200	
	.3 -	
	-5,0 kPa - 4.5 and 9.5 kPa	
	-5 PEAT	
	2	
	-/ 12 kPa 20 RPa 32 kFa	
	E .9 -	
	2 CLAY	
	-11	
	-13 - 24.5 kPa 130 kPa 154.5 kPa	
	-15 - SAND	
	-17 Effective Pore water total stress	
	suess pressure	
1b	2 layers, 3.5m thickness, therefore centres of layers are NAP – 8.25	All
	and -11.75 m respectively.	answers in
		kPa
	Interpolating between top and base of layer (note must do this for	
	pwp):	Before:
	<u>Layer I</u> = $22 + 1/(154.5 - 22) = (2.6 + D)$	Layer I
	$\sigma = 32 + \frac{1}{4} (134.5 - 32) = 62.6 \text{ KPa}$ $r = 20 + \frac{1}{4} (120 - 20) = 47.5 \text{ kPa}$	$\sigma = 62.0$ $\sigma' = 15.1$
	p = 20 + 74 (150 - 20) - 47.5 Kra $\sigma^2 = 62.6 - 47.5 = 15.1 \text{ kPa}$	0 = 13.1 Laver 2
	0 02.0 47.5 13.1 Kiu	$\frac{Day 012}{\sigma}$
	Laver 2	$\sigma' = 21.4$
	$\overline{\sigma} = 32 + \frac{3}{4} (154.5 - 32) = 123.9 \text{ kPa}$	
	$p=20 + \frac{1}{4} (130 - 20) = 102.5 \text{ kPa}$	
	$\sigma' = 123.9 - 102.5 = 21.4 \text{ kPa}$	
	Load applied is $4.5 \times 18 = 81 \text{ kPa}$	
	Total and effective stresses increase by this amount:	
	Laver 1	
	$\overline{\sigma} = 62.6 + 81 = 143.6 \text{ kPa}$	After:
	p= 47.5 kPa	Layer 1
	$\sigma' = 15.1 + 81 = 96.1 \text{ kPa}$	σ=143.6
		$\sigma' = 96.1$
	<u>Layer 2</u> $\sigma = 123.9 + 81 = 204.9 \text{ kP}_2$	$\frac{\text{Layer } 2}{\sigma = 204.0}$
	n = 1025 kPa	$\sigma^2 = 102.4$
	$\sigma^2 = 21.4 + 81 = 102.4 \text{ kPa}$	5 102. т

1c	$\varepsilon = \frac{1}{c_p} \ln\left(\frac{\sigma}{\sigma_1}\right)$ $\frac{1}{20} \ln\left(\frac{96.1}{15.1}\right) = 0.092, \text{ deformation} = 0.092 \text{ x } 3.5 = 0.32 \text{ m} \text{ (rounding to } 0.33 \text{ m acceptable})$ $\frac{1}{20} \ln\left(\frac{102.4}{21.4}\right) = 0.078, \text{ deformation} = 0.078 \text{ x } 3.5 = 0.27 \text{ m}$ Total clay deformation = $0.32 + 0.27 = 0.59 \text{ m}$	0.59 m (0.60 m due to rounding ok)
1d	$\varepsilon = \frac{1}{c_p} \ln \left(\frac{\sigma}{\sigma_1}\right)$ For peat, NAP at centre = -5 m: Before: $\sigma = 10+0.5x11 = 15.5 \text{ kPa}$ p = 0.5x10 = 5 kPa $\sigma' = 15.5 + 81 = 96.5 \text{ kPa}$ $\sigma = 15.5 + 81 = 96.5 \text{ kPa}$ $\sigma' = 10.5 + 81 = 91.5 \text{ kPa}$ $\frac{1}{10} \ln \left(\frac{91.5}{10.5}\right) = 0.22$, deformation = 0.216 x 3 = 0.65 m Total = 0.59 + 0.65 = 1.25 m	1.25 m (1.26 m due to rounding ok)

Question No.	Workings	Answer
2a	Density = mass / volume	
	Mass = 450g = 0.45kg	1154 kg/m^3
	Volume = $(\pi * 50^2 / 4) \ge 200 \ge 10^{-9} = 0.00039 \text{m}^3$	1154 kg/m
	Density, $\rho = 0.45 / 0.00039 = 1154 \text{kg/m}^3$	
2b	$\gamma = W/V$	
	$= \rho * g$	11.5 kN/m ³
	=1154*10 = 11540 N/m ³ = 11.5 kN/m ³	
2c	Soil is very light. Probably peat.	Peat
2d	$\gamma = W/V$	
	W = 0.383*10 = 3.83N	
	$V = (\pi * 50^2 / 4) * 173 * 10^{-9} = 0.00034m^3$	$11.21 \text{-} \text{N} \text{/} \text{-} \text{-} \frac{3}{2}$
	$\gamma = 3.83 / 0.00034 = 11264 \text{ N/m3} = 11.3 \text{kN/m}^3$	11.3 KIN/M
2e	Water content, $w = W_w/W_p$ (weight water / weight particles)	
	$W_w = 450 - 383 = 67g$	
	$W_p = 383g$	17.5%
	w = (67 / 383) * 100 = 17.5%	
21	Original Void ratio, e _o	
	$e = V_v / V_s$	
	$V_s = M_s * g / \gamma_s = 0.383(kg) * 10 / 15000(N/m3) = 0.255x10^{-3}m^3$	
	$V_v = V_t - V_s = 0.00039 - 0.000255 = 0.135 \times 10^{-3} m^3$ (or could	
	calculate from weight of water) a = 0.135 / 0.255 = 0.53 (dimensionless)	0.53
	$e_0 = 0.1337 \ 0.233 = 0.33 \ (affinensionless)$	(dimensionless)
	New Void ratio, e _n	
	$V_s = 0.255 \times 10^{-3} m^3$	
	$V_v = V_t - V_s = 0.00034 - 0.000255 = 0.085 \times 10^{-3} m^3$ (or could	
	calculate from weight of water) = 0.085 + 0.255 = 0.22 (dimensionless)	0.33 (dimensionless)
	$e_n = 0.085 / 0.255 = 0.33$ (dimensionless)	(unitensioness)
2g	e = n/(1-n)	
	therefore $n = e / (1+e)$	
	$n_0 = 0.53 / 1.53 = 0.346$	0.346
	$n_n = 0.33 / 1.33 = 0.248$	0.248
1		

Question No.	Workings	Answer
3a	Problem of vertical flow. Specific discharge, q (m/s), is $q = -k \frac{dh}{dL} = -3.3 \times 10^{-8} \frac{(-1.755)}{15} = 7.2 \times 10^{-9} m/s$ Discharge (m ³ /s) = qA = $7.2 \times 10^{-9} \times \frac{2000^2 \pi}{4} = 0.0225 m^3/s$ $0.0225 \times 3600 = 80.9 m^3$ /hour	80.9 m ³ /hour
3b	Again similar problem to 3a	0.02 m NAP
	$q = -k \frac{dh}{dL}, \text{ therefore } dh = -dL \frac{q}{k}$ $q = \frac{Q}{A} = \frac{125/3600}{2000^2 \pi/4} = 1.105 \times 10^{-8} m/s$ $dh = 5.02 m$ water height is 0.02 m NAP, approximately sea level	(accept 0.00 m due to rounding)
3c	Liquefaction can occur when effective stress equals zero.	4.26 m
	Total stresses at the base of the soil layer = $(15 - d) \times 17$ Where d is the depth of excavation.	
	Pore water pressure at the base of soil layer = $(20 - 1.75) \times 10 = 182.5 \text{ kN/m}^3$	
	Therefore:	
	Excavation level, $d = 15 - (182.5/17) = 4.26 \text{ m}$	
3d	Effective stress just below the structure must be positive to avoid floatation.	0.134m
	(d here is depth to top of culvert)	
	Pore water pressure = $du/dx x (d+h) = (182.5/15) x (5+3.5) = 103.4$ kPa	
	Total stress = d x γ + (t x (h+w))x25 = 5x17 + (t x (3.5+2))x25 = 85 + 137.5 t Note weight of culvert is divided by 2 as 2 m wide	
	(103.4 - 85)/137.5 = 0.134m	

Question	Workings	Answer
4a	$c_{v} = \frac{k}{\gamma_{w} m_{v}}$ Clay 1: $c_{v} = \frac{7.2 \times 10^{-8}}{10 \times 0.0007} = 0.00001 \ m^{2}/s$ Clay 2: $c_{v} = \frac{4.4 \times 10^{-7}}{10 \times 0.0002} = 0.00022 \ m^{2}/s$	$0.00001 m^2/s$ $0.00022 m^2/s$
4b	For clay layer 1 $\sigma = 127$ kPa $\epsilon = m_v \sigma = 0.0007 \text{ x } 127 = 0.089$ deformation = 0.089 x 5 = 0.445 m For clay layer 2 $\sigma = 127$ kPa $\epsilon = m_v \sigma = 0.0002 \text{ x } 127 = 0.0254$ deformation = 0.0254 x 20 = 0.508 m Total deformation = 0.445 + 0.508 = 0.953 m	0.953 m
4c	Time for consolidation is proportional to h^2/c_v Layer 1: h = d/2 = 2.5 m $h^2/c_v = 2.5^2 / 0.00001 = 607 640$ Layer 2: h = d = 20 m $h^2/c_v = 20^2 / 0.00022 = 1 818 000$ 600 000 < 1800 000 therefore layer 1 consolidates faster NB. If forgot layer 2 can only drain one way answer is opposite. Award 50% of the mark.	layer 1 consolidates faster
4d	Notice that only need to do the calculation on the slower layer, layer 2. $(c_v t_{99\%})/h^2 = 1.784 \text{ (will accept 2)}$ Therefore $t_{99\%} = 1.784 h^2/c_v = 1.784 x 1 818 000 = 3240 000 \text{ sec}$ $= 37.5 \text{ days}$ For constant = 2, answer is 42.1 days.	37.5 days

Question	Workings	Answer
No.		
4e	At 80% complete (U=0.8)	
		0.85 m
	From the chart $(c_v t_{80\%}) / h^2 \approx 0.57$	
	Therefore, using the slowest layer $t_{80\%} \approx 0.57 \text{ h}^2/c_v = 1036\ 000 \text{ sec}$	
	And the top layer will then be	
	$(c_v t) / h^2 = 1036\ 000 / 607\ 640 = 1.71$, therefore nearly fully consolidated.	
	Deformation on the surface is then: $1.0 \ge 0.445 + 0.8 \ge 0.508 = 0.85 \text{ m}$	