DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Civil Engineering and Geosciences

Soil Mechanics I

CT1091

BSc EXAMINATION 2012

ANSWER BOOK

FOURTH PERIOD

TIME: $09.00-12.00$

Answer ALL Questions
(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet
Clearly identify the answer in the answer box

Question No.	Workings	Answer
1a		
1b	2 layers, 3.5 m thickness, therefore centres of layers are NAP - 8.25 and -11.75 m respectively. Interpolating between top and base of layer (note must do this for pwp): Layer 1 $\begin{aligned} & \sigma=32+1 / 4(154.5-32)=62.6 \mathrm{kPa} \\ & \mathrm{p}=20+1 / 4(130-20)=47.5 \mathrm{kPa} \\ & \sigma^{\prime}=62.6-47.5=15.1 \mathrm{kPa} \end{aligned}$ Layer 2 $\begin{aligned} & \sigma=32+3 / 4(154.5-32)=123.9 \mathrm{kPa} \\ & \mathrm{p}=20+1 / 4(130-20)=102.5 \mathrm{kPa} \\ & \sigma^{\prime}=123.9-102.5=21.4 \mathrm{kPa} \end{aligned}$ Load applied is $4.5 \times 18=81 \mathrm{kPa}$ Total and effective stresses increase by this amount: Layer 1 $\begin{aligned} & \bar{\sigma}=62.6+81=143.6 \mathrm{kPa} \\ & p=47.5 \mathrm{kPa} \\ & \sigma^{\prime}=15.1+81=96.1 \mathrm{kPa} \end{aligned}$ Layer 2 $\begin{aligned} & \bar{\sigma}=123.9+81=204.9 \mathrm{kPa} \\ & \mathrm{p}=102.5 \mathrm{kPa} \\ & \sigma^{\prime}=21.4+81=102.4 \mathrm{kPa} \end{aligned}$	All answers in kPa Before: Layer 1 $\overline{\sigma=62.6}$ $\sigma^{\prime}=15.1$ Layer 2 $\begin{aligned} & \sigma=123.9 \\ & \sigma^{\prime}=21.4 \end{aligned}$ After: Layer 1 $\begin{aligned} & \sigma=143.6 \\ & \sigma^{\prime}=96.1 \end{aligned}$ Layer 2 $\overline{\sigma=204} .9$ $\sigma^{\prime}=102.4$

1c	$\begin{aligned} & \varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma}{\sigma_{1}}\right) \\ & \frac{1}{20} \ln \left(\frac{96.1}{15.1}\right)=0.092, \text { deformation }=0.092 \times 3.5=0.32 \mathrm{~m} \text { (rounding to } \\ & 0.33 \mathrm{~m} \text { acceptable) } \\ & \frac{1}{20} \ln \left(\frac{102.4}{21.4}\right)=0.078, \text { deformation }=0.078 \times 3.5=0.27 \mathrm{~m} \\ & \text { Total clay deformation }=0.32+0.27=0.59 \mathrm{~m} \end{aligned}$	$0.59 \mathrm{~m}$ (0.60 m due to rounding ok)
1d	$\varepsilon=\frac{1}{c_{p}} \ln \left(\frac{\sigma}{\sigma_{1}}\right)$ For peat, NAP at centre $=-5 \mathrm{~m}$: Before: $\begin{aligned} & \sigma=10+0.5 \times 11=15.5 \mathrm{kPa} \\ & p=0.5 \times 10=5 \mathrm{kPa} \\ & \sigma=15.5-5=10.5 \mathrm{kPa} \end{aligned}$ $\begin{aligned} & \sigma=15.5+81=96.5 \mathrm{kPa} \\ & \mathrm{p}=5 \mathrm{kPa} \\ & \sigma^{\prime}=10.5+81=91.5 \mathrm{kPa} \end{aligned}$ $\frac{1}{10} \ln \left(\frac{91.5}{10.5}\right)=0.22 \text {, deformation }=0.216 \times 3=0.65 \mathrm{~m}$ $\text { Total }=0.59+0.65=1.25 \mathrm{~m}$	$1.25 \mathrm{~m}$ (1.26 m due to rounding ok)

Question No.	Workings	Answer
2a	$\begin{aligned} & \text { Density }=\text { mass } / \text { volume } \\ & \text { Mass }=450 \mathrm{~g}=0.45 \mathrm{~kg} \\ & \text { Volume }=\left(\pi * 50^{2} / 4\right) \times 200 \times 10^{-9}=0.00039 \mathrm{~m}^{3} \\ & \text { Density, } \rho=0.45 / 0.00039=1154 \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$	$1154 \mathrm{~kg} / \mathrm{m}^{3}$
2b	$\begin{aligned} & \gamma=\mathrm{W} / \mathrm{V} \\ & =\rho * \mathrm{~g} \\ & =1154 * 10=11540 \mathrm{~N} / \mathrm{m}^{3}=11.5 \mathrm{kN} / \mathrm{m}^{3} \end{aligned}$	$11.5 \mathrm{kN} / \mathrm{m}^{3}$
2c	Soil is very light. Probably peat.	Peat
2d	$\begin{aligned} & \gamma=\mathrm{W} / \mathrm{V} \\ & \mathrm{~W}=0.383 * 10=3.83 \mathrm{~N} \\ & \mathrm{~V}=\left(\pi * 50^{2} / 4\right) * 173 * 10^{-9}=0.00034 \mathrm{~m}^{3} \\ & \gamma=3.83 / 0.00034=11264 \mathrm{~N} / \mathrm{m3}=11.3 \mathrm{kN} / \mathrm{m}^{3} \end{aligned}$	$11.3 \mathrm{kN} / \mathrm{m}^{3}$
2e	Water content, $\mathrm{w}=\mathrm{W}_{\mathrm{w}} / \mathrm{W}_{\mathrm{p}}$ (weight water / weight particles) $\begin{aligned} & \mathrm{W}_{\mathrm{w}}=450-383=67 \mathrm{~g} \\ & \mathrm{~W}_{\mathrm{p}}=383 \mathrm{~g} \\ & \mathrm{w}=(67 / 383) * 100=17.5 \% \end{aligned}$	17.5\%
2 f	Original Void ratio, e_{0} $\begin{aligned} & \mathrm{e}=\mathrm{V}_{\mathrm{V}} / \mathrm{V}_{\mathrm{s}} \\ & \mathrm{~V}_{\mathrm{s}}=\mathrm{M}_{\mathrm{s}} * \mathrm{~g} / \gamma_{\mathrm{s}}=0.383(\mathrm{~kg}) * 10 / 15000(\mathrm{~N} / \mathrm{m} 3)=0.255 \times 10^{-3} \mathrm{~m}^{3} \\ & \mathrm{~V}_{\mathrm{v}}=\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{s}}=0.00039-0.000255=0.135 \times 10^{-3} \mathrm{~m}^{3} \text { (or could } \\ & \text { calculate from weight of water) } \\ & \mathrm{e}_{\mathrm{o}}=0.135 / 0.255=0.53 \text { (dimensionless) } \end{aligned}$ New Void ratio, e_{n} $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=0.255 \times 10^{-3} \mathrm{~m}^{3} \\ & \mathrm{~V}_{\mathrm{v}}=\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{s}}=0.00034-0.000255=0.085 \times 10^{-3} \mathrm{~m}^{3} \text { (or could } \\ & \text { calculate from weight of water) } \\ & \mathrm{e}_{\mathrm{n}}=0.085 / 0.255=0.33 \text { (dimensionless) } \end{aligned}$	0.53 (dimensionless) 0.33 (dimensionless)
2 g	$\begin{aligned} & \mathrm{e}=\mathrm{n} /(1-\mathrm{n}) \\ & \text { therefore } \mathrm{n}=\mathrm{e} /(1+\mathrm{e}) \\ & \mathrm{n}_{\mathrm{o}}=0.53 / 1.53=0.346 \\ & \mathrm{n}_{\mathrm{n}}=0.33 / 1.33=0.248 \end{aligned}$	$\begin{aligned} & 0.346 \\ & 0.248 \end{aligned}$

Question No.	Workings	Answer
3a	Problem of vertical flow. Specific discharge, $q(\mathrm{~m} / \mathrm{s})$, is $\begin{aligned} & \quad q=-k \frac{d h}{d L}=-3.3 \times 10^{-8} \frac{(-1.75--5)}{15}=7.2 \times 10^{-9} \mathrm{~m} / \mathrm{s} \\ & \text { Discharge }\left(\mathrm{m}^{3} / \mathrm{s}\right)=\mathrm{qA}=7.2 \times 10^{-9} \times \frac{2000^{2} \pi}{4}=0.0225 \mathrm{~m}^{3} / \mathrm{s} \\ & 0.0225 \times 3600=80.9 \mathrm{~m}^{3} / \mathrm{hour} \end{aligned}$	$80.9 \mathrm{~m}^{3} /$ hour
3b	Again similar problem to 3 a $\begin{aligned} & q=-k \frac{d h}{d L}, \text { therefore } d h=-d L \frac{q}{k} \\ & q=\frac{Q}{A}=\frac{125 / 3600}{2000^{2} \pi / 4}=1.105 \times 10^{-8} \mathrm{~m} / \mathrm{s} \\ & \mathrm{dh}=5.02 \mathrm{~m} \end{aligned}$ water height is 0.02 m NAP, approximately sea level	$\begin{aligned} & 0.02 \mathrm{~m} \mathrm{NAP} \\ & \text { (accept } 0.00 \\ & \mathrm{~m} \text { due to } \\ & \text { rounding) } \end{aligned}$
3 c	Liquefaction can occur when effective stress equals zero. Total stresses at the base of the soil layer $=(15-\mathrm{d}) \times 17$ Where d is the depth of excavation. Pore water pressure at the base of soil layer $=(20-1.75) \times 10=$ $182.5 \mathrm{kN} / \mathrm{m}^{3}$ Therefore: Excavation level, $\mathrm{d}=15-(182.5 / 17)=4.26 \mathrm{~m}$	4.26 m
3d	Effective stress just below the structure must be positive to avoid floatation. (d here is depth to top of culvert) Pore water pressure $=\mathrm{du} / \mathrm{d} \times \mathrm{x}(\mathrm{d}+\mathrm{h})=(182.5 / 15) \times(5+3.5)=103.4$ kPa Total stress $=\mathrm{d} \times \gamma+(\mathrm{tx}(\mathrm{h}+\mathrm{w})) \times 25=5 \mathrm{x} 17+(\mathrm{t} \times(3.5+2)) \times 25=$ $85+137.5$ t Note weight of culvert is divided by 2 as 2 m wide. $(103.4-85) / 137.5=0.134 \mathrm{~m}$	0.134m

Question No.	Workings	Answer
4a	$c_{v}=\frac{k}{\gamma_{w} m_{v}}$ Clay 1: $c_{v}=\frac{7.2 \times 10^{-8}}{10 \times 0.0007}=0.00001 \mathrm{~m}^{2} / \mathrm{s}$ Clay 2: $c_{v}=\frac{4.4 \times 10^{-7}}{10 \times 0.0002}=0.00022 \mathrm{~m}^{2} / \mathrm{s}$	$0.00001 \mathrm{~m}^{2} / \mathrm{s}$ $0.00022 \mathrm{~m}^{2} / \mathrm{s}$
4b	For clay layer 1 $\begin{aligned} & \sigma=127 \mathrm{kPa} \\ & \varepsilon=\mathrm{m}_{\mathrm{v}} \sigma=0.0007 \times 127=0.089 \\ & \text { deformation }=0.089 \times 5=0.445 \mathrm{~m} \end{aligned}$ For clay layer 2 $\begin{aligned} & \sigma=127 \mathrm{kPa} \\ & \varepsilon=\mathrm{m}_{\mathrm{v}} \sigma=0.0002 \times 127=0.0254 \\ & \text { deformation }=0.0254 \times 20=0.508 \mathrm{~m} \end{aligned}$ Total deformation $=0.445+0.508=0.953 \mathrm{~m}$	0.953 m
4c	Time for consolidation is proportional to $\mathrm{h}^{2} / \mathrm{c}_{\mathrm{v}}$ Layer 1: $\begin{aligned} & \mathrm{h}=\mathrm{d} / 2=2.5 \mathrm{~m} \\ & \mathrm{~h}^{2} / \mathrm{c}_{\mathrm{v}}=2.5^{2} / 0.00001=607640 \end{aligned}$ Layer 2: $\begin{aligned} & \mathrm{h}=\mathrm{d}=20 \mathrm{~m} \\ & \mathrm{~h}^{2} / \mathrm{c}_{\mathrm{v}}=20^{2} / 0.00022=1818000 \end{aligned}$ $600000<1800000$ therefore layer 1 consolidates faster NB. If forgot layer 2 can only drain one way answer is opposite. Award 50% of the mark.	layer 1 consolidates faster
4d	Notice that only need to do the calculation on the slower layer, layer 2. $\left(\mathrm{c}_{\mathrm{v}} \mathrm{t}_{99 \%}\right) / \mathrm{h}^{2}=1.784$ (will accept 2) Therefore $\mathrm{t}_{99 \%}=1.784 \mathrm{~h}^{2} / \mathrm{c}_{\mathrm{v}}=1.784 \times 1818000=3240000 \mathrm{sec}$ $=37.5$ days For constant $=2$, answer is 42.1 days.	37.5 days

Question No.	Workings	Answer
4 e	At 80% complete $(\mathrm{U}=0.8)$ From the chart $\left(\mathrm{c}_{\mathrm{v}} \mathrm{t}_{80 \%}\right) / \mathrm{h}^{2} \approx 0.57$ Therefore, using the slowest layer $\mathrm{t}_{80} \% \approx 0.57 \mathrm{~h}^{2} / \mathrm{c}_{\mathrm{v}}=1036000 \mathrm{sec}$ And the top layer will then be $\left(\mathrm{c}_{\mathrm{v}} \mathrm{t}\right) / \mathrm{h}^{2}=1036000 / 607640=1.71$, therefore nearly fully consolidated. Deformation on the surface is then: $1.0 \times 0.445+0.8 \times 0.508=$ 0.85 m	0.85 m

