DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Civil Engineering and Geosciences

Soil Mechanics I

CT1091

BSc EXAMINATION 2012 - RESIT

ANSWER BOOK

FIFTH PERIOD

(Note that the questions carry unequal marks)
Other instructions
Write your name and student number on each sheet
Clearly identify the answer in the answer box

Question No.	Workings	Answer
1a	Recognise that there is one stream line at the edge of the sheet pile and also one at the base. Potential lines include both soil surfaces. Option 1 Stream lines $=4.5$ Potential lines $=8$ Option 2 Stream lines $=5$ Potential lines $=10$	Option 1 SLs $=4.5$ accept 4 to 5 $\text { PLs }=8$ Option 2 SLs $=5$ accept 4 to 5 PLs $=10$
1b	Flow into the excavation can be calculated via: $Q=2 \frac{n_{s}}{n_{n}} k \Delta h B$ note 2 is from symmetry. Option 1 - stream bands 3.5 or 4 is ok (half in centre), 7 potential bands $\begin{aligned} & Q_{1}=2 \times \frac{3.5}{7} 3.7 \times 10^{-5} \times 9 B=0.000333 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\ & Q_{1}=1.2 \mathrm{~m}^{3} / \mathrm{hour} / \mathrm{m} \end{aligned}$ Option 2 - stream bands 4 (half in centre), 9 potential bands $\begin{aligned} & Q_{2}=2 \times \frac{4}{9} 3.7 \times 10^{-5} \times 9 B=0.000296 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\ & Q_{2}=1.07 \mathrm{~m}^{3} / \mathrm{hour} / \mathrm{m} \end{aligned}$	$\begin{aligned} & Q_{1}=1.2 \\ & m^{3} / \text { hour } / \\ & m \\ & \\ & Q_{2}=1.07 \\ & m^{3} / \text { hour / } \\ & m \end{aligned}$
1c	Critical point for liquefaction is at the downstream end of the flow path. Two methods: calculate effective stress or calculate critical gradient. Critical gradient is $i_{c r i t}=-\frac{\gamma_{s}-\gamma_{w}}{\gamma_{w}}=-\frac{20-10}{10}=-1.0$ Option 1 Gradient over last square is: $\mathrm{dH}=-9 / 7=-1.29 \mathrm{~m}$ $\mathrm{dz}=0.5 \mathrm{~m}$ $\mathrm{dH} / \mathrm{dz}=-2.57 \underline{\text { Risk }}$ of liquefaction Option 2 Gradient over last square is: $\mathrm{dH}=-9 / 9=-1 \mathrm{~m}$ $\mathrm{dz}=1.0 \mathrm{~m}$ $\mathrm{dH} / \mathrm{dz}=-1.00$ Borderline risk of liquefaction Method for checking effective stress: Option 1 Total stress at base of last square $=0.5 \times 20=10 \mathrm{kPa}$ PWP due to gravity $=0.5 \times 10=5 \mathrm{kPa}$ PWP due to flow $=\mathrm{dH} \gamma_{\mathrm{w}}=1.29 \times 10=12.9 \mathrm{kPa}$ Effective stress $=10-(5+12.9)=-7.9 \mathrm{kPa}<0$ therefore at risk.	Yes, option 1 will liquify. Option 2 is borderline.

Question No.	Workings	Answer
2a		
2b	3 layers, 2 m thickness, therefore centres of layers are NAP -13.5, -15.5 and -17.5 m respectively. Calculated from base of layer above (or could calculate from volumetric weights): Layer 1 $\begin{aligned} & \sigma=198.5+1 \times 17=215.5 \mathrm{kPa} \\ & \mathrm{p}=40+1 \mathrm{x} 10=50 \mathrm{kPa} \\ & \sigma^{\prime}=215.5-50=165.5 \mathrm{kPa} \end{aligned}$ Layer 2 $\begin{aligned} & \sigma=198.5+3 \times 17=249.5 \mathrm{kPa} \\ & \mathrm{p}=40+3 \times 10=70 \mathrm{kPa} \\ & \sigma^{\prime}=249.5-70=179.5 \mathrm{kPa} \end{aligned}$ Layer 3 $\begin{aligned} & \sigma=198.5+5 \times 17=283.5 \mathrm{kPa} \\ & \mathrm{p}=40+5 \times 10=90 \mathrm{kPa} \\ & \sigma^{\prime}=283.5-90=193.5 \mathrm{kPa} \end{aligned}$ Load applied is $3 \times 18=54 \mathrm{kPa}$ Total and effective stresses increase by this amount:	Stresses in kPa Before L1 $\sigma=215.5$ $\sigma^{\prime}=165.5$ L2 $\sigma=249.5$ $\sigma^{\prime}=179.5$ L3 $\sigma=283.5$ $\sigma^{\prime}=193.5$ After L1 $\sigma=269.5$ $\sigma^{\prime}=219.5$ L2 $\sigma=303.5$ $\sigma^{\prime}=233.5$ L3 $\sigma=337.5$ $\sigma^{\prime}=247.5$

2c	$\begin{aligned} & \varepsilon=\frac{1}{C_{p}} \ln \left(\frac{\sigma^{\prime}}{\sigma_{1}}\right) \\ & \frac{1}{16} \ln \left(\frac{219.5}{165.5}\right)=0.0176, \text { deformation }=0.0176 \times 2=0.035 \mathrm{~m} \\ & \frac{1}{16} \ln \left(\frac{233.5}{179.5}\right)=0.0164, \text { deformation }=0.0164 \times 2=0.033 \mathrm{~m} \\ & \frac{1}{16} \ln \left(\frac{247.5}{193.5}\right)=0.0154, \text { deformation }=0.0164 \times 2=0.031 \mathrm{~m} \end{aligned}$ Total clay deformation $=0.035+0.033+0.031=0.099 \mathrm{~m}$	0.099 m
2d	$\begin{aligned} & \mathrm{m}_{\mathrm{v}}=1 / \mathrm{C}_{\mathrm{p}} \sigma_{1}{ }^{\prime}=1 /(16 \times 179.5)=0.00035 \mathrm{kPa}^{-1} \\ & \mathrm{c}_{\mathrm{v}}=\mathrm{k} / \gamma_{\mathrm{w}} \mathrm{~m}_{\mathrm{v}}=3.4 \times 10^{-8} /\left(10 \times 9.7 \times 10^{-6}\right)=9.7 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \end{aligned}$ can consider consolidation to be complete when consolidation coeff is 1.74 (will also accept 2) $\mathrm{c}_{\mathrm{v}} \mathrm{t}_{\mathrm{g}} \mathrm{g} \% / \mathrm{h}^{2}=1.784$ $\mathrm{t}_{99 \%}=1,644,273$ seconds or 19 days for consolidation coeff $=2$: $\mathrm{t}_{99 \%}=1,843,356$ seconds or 21 days	1,644,273 seconds or 19 days

Question No.	Workings	Answer
3a	$\begin{aligned} & \gamma=\mathrm{W} / \mathrm{V} \\ & \mathrm{~W}=\mathrm{W}(\mathrm{~kg}) * 10=628 / 1000 * 10=6.28 \mathrm{~N} \\ & \mathrm{~V}=325 \times \pi \times 36^{2} / 4=330809 \mathrm{~mm}^{3}=0.000331 \mathrm{~m}^{3} \\ & \gamma=6.28 / 0.000331=18984 \mathrm{~N} / \mathrm{m}^{3}=18.98 \mathrm{kN} / \mathrm{m}^{3} \end{aligned}$	$\begin{aligned} & 18.98 \\ & \mathrm{kN} / \mathrm{m}^{3} \end{aligned}$
3b	Clay on sieve size $1 \mu \mathrm{~m}$, Silt on sieve size $2 \mu \mathrm{~m}$, Sand above Therefore $\mathrm{V}_{\text {clay }}=8 \mathrm{ml}, \mathrm{W}_{\text {clay }}=21 / 1000 * 10=0.21 \mathrm{~N}$ $\begin{aligned} & \mathrm{V}_{\text {silt }}=32 \mathrm{ml}, \mathrm{~W}_{\text {silt }}=81 / 1000 * 10=0.81 \mathrm{~N} \\ & \mathrm{~V}_{\text {sand }}=(46+41+20+11)=118 \mathrm{ml}, \mathrm{~W}_{\text {sand }}=(141+157+84+46) / 1000 * 10 \\ & =4.28 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {clay }}=8 \\ & \mathrm{ml} \\ & \mathrm{~W}_{\text {clay }} \\ & 0.21 \mathrm{~N} \\ & \\ & \mathrm{~V}_{\text {silt }}=32 \\ & \mathrm{ml}, \mathrm{~W}_{\text {silt }} \\ & =0.81 \mathrm{~N} \\ & \\ & \mathrm{~V}_{\text {sand }}= \\ & 118 \mathrm{ml} \\ & \mathrm{~W}_{\text {sand }}= \\ & 4.28 \mathrm{~N} \\ & \hline \end{aligned}$
3c	$\begin{aligned} & \text { Mass of Peat }=603-530=73 \mathrm{~g} \\ & \mathrm{~V}=73 / 1000 / 1100 \times 100^{3}=66.4 \mathrm{ml} \\ & \%_{\text {peat }}=66.4 / 331 \times 100=20.1 \% \\ & \%_{\text {sand }}=118 / 331 \times 100=35.6 \% \\ & \\ & \text { Mass of water }=628-603=25 \mathrm{~g} \\ & \mathrm{~V}=25 \times 1=25 \mathrm{ml} \\ & \%_{\text {water }}=25 / 331 \times 100=7.6 \% \\ & \mathrm{~V}=331-(8+32+118+66.4-25)=81.4 \mathrm{ml} \\ & \%_{\text {air }}=81.4 / 331 \times 100=24.6 \% \end{aligned}$	$\begin{aligned} & \hline \%_{\text {peat }}= \\ & 20.1 \% \\ & \%_{\text {sand }}= \\ & 35.6 \% \\ & \%_{\text {water }}= \\ & 7.6 \% \\ & \%_{\text {air }}= \\ & 24.6 \% \end{aligned}$
3d	$\begin{aligned} & \mathrm{n}=\mathrm{V}_{\mathrm{V}} / \mathrm{V} \\ & =(25+81.4) / 331=0.235 * 100=32.1 \% \end{aligned}$	$\begin{array}{\|l\|} \hline 32.1 \% \\ \text { or } \\ 0.32 \end{array}$

Question No.	Workings	Answer
4a		
4b	This question is difficult - generous marking. Use Flamant for either strip load or line load. Could also use Newmark but would involve multiple drawings. If use line load must state it is due to clay being 7 m from surface. Centre of soft clay: NAP - 8 m Initial conditions from above $\begin{aligned} & \mathrm{p}=80 \mathrm{kPa} \\ & \sigma=142 \mathrm{kPa} \\ & \sigma^{\prime}=62 \mathrm{kPa} \end{aligned}$ In firm clay (2 layers) NAP -12.5 and -19.5 For 12.5 m : $\mathrm{p}=125 \mathrm{kPa}$ $\sigma=217.5 \mathrm{kPa}$ $\sigma^{\prime}=92.5 \mathrm{kPa}$ For 19.5 m : $\mathrm{p}=195 \mathrm{kPa}$ $\sigma=336.5 \mathrm{kPa}$ $\sigma^{\prime}=141.5 \mathrm{kPa}$	

	$\sigma=\frac{2 p}{\pi}\left[\arctan \left(\frac{a}{z}\right)+\frac{a z}{a^{2}+z^{2}}\right]$ z is depth and $\mathrm{a}=$ width $/ 2=2.5$ $\mathrm{p}=-5 \times 18+60=-30 \mathrm{kPa}$ In this case z is $3,7.5$ and 14.5 For drawing see sketch in a)	
4c	Change in stress (kPa) Layer thickness (m) C_{10} Strain Deformation (m) Layer 1 -22.7 2 6 -0.033 -0.066 Layer 2 -11.9 7 17 -0.0035 -0.025 -6.5 7 17 -0.0012 -0.0084 Total deformation is $0.066+0.025+0.0084=0.099 \mathrm{~m}$ rise. Full marks here is method is correct and answer is wrong due to wrong stresses being input.	$\begin{aligned} & -0.099 \mathrm{~m} \\ & \text { Or } 0.099 \mathrm{~m} \\ & \text { rise } \end{aligned}$

