DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Civil Engineering and Geosciences

Soil Mechanics I

CT1091

BSc EXAMINATION 2012 - RESIT

ANSWER BOOK

FIFTH PERIOD

DATE: 31 August 2012

TIME: 09.00 - 12.00

Answer ALL Questions (Note that the questions carry unequal marks)

Other instructions Write your name and student number on each sheet

<u>Clearly identify the answer in the answer box</u>

Question No	Workings	Answer
1a	Recognise that there is one stream line at the edge of the sheet pile and also one at the base. Potential lines include both soil surfaces. Option 1 Stream lines = 4.5 Potential lines = 8 Option 2 Stream lines = 5 Potential lines = 10	$\frac{\text{Option 1}}{\text{SLs} = 4.5}$ accept 4 to 5 $PLs = 8$ $\frac{\text{Option 2}}{\text{SLs} = 5}$ accept 4 to 5 $PLs = 10$
1b	Flow into the excavation can be calculated via: $Q = 2 \frac{n_s}{n_n} k \Delta h B$ note 2 is from symmetry. <u>Option 1 – stream bands 3.5 or 4 is ok (half in centre), 7 potential bands</u> $Q_1 = 2 \times \frac{3.5}{7} 3.7 \times 10^{-5} \times 9B = 0.000333 \ m^3/s \ /m$ $Q_1 = 1.2 \ m^3/hour \ /m$ <u>Option 2 – stream bands 4 (half in centre), 9 potential bands</u> $Q_2 = 2 \times \frac{4}{9} 3.7 \times 10^{-5} \times 9B = 0.000296 \ m^3/s \ /m$ $Q_2 = 1.07 \ m^3/hour \ /m$	$Q_1 = 1.2$ $m^3 / hour / m$ $Q_2 = 1.07$ $m^3 / hour / m$
1c	Critical point for liquefaction is at the downstream end of the flow path. Two methods: calculate effective stress or calculate critical gradient. Critical gradient is $i_{crit} = -\frac{\gamma_s - \gamma_w}{\gamma_w} = -\frac{20-10}{10} = -1.0$ <u>Option 1</u> Gradient over last square is: dH = -9/7 = -1.29 m dz = 0.5 m dH/dz = -2.57 Risk of liquefaction <u>Option 2</u> Gradient over last square is: dH = -9/9 = -1 m dz = 1.0 m dH/dz = -1.00 Borderline risk of liquefaction Method for checking effective stress: <u>Option 1</u> Total stress at base of last square = 0.5 x 20 = 10 kPa PWP due to gravity = 0.5 x 10 = 5 kPa PWP due to flow = dH γ_w = 1.29 x 10 = 12.9 kPa	Yes, option 1 will liquify. Option 2 is borderline.

Question	Workings	Answer
No.		
2a	Pressure, kPa	
	-5 - 103.5 and 111 kPa SAND	
	-7.5 kPa	
	-10	
	-15 - 40 kPa 158.5 kPa 198.5 kPa CLAY	
	E	
	20 -20 - 100 KPa 200.5 KPa 300.5 KPa	
	-25 - Effective total stress	
	Pore water stress LUAMY SAND	
	-30 -	
	265 kPa 357.25 kPa 622.25 kPa	
	-35	
	-40 GRANITE	
2b	3 layers, 2m thickness, therefore centres of layers are NAP –13.5,	Stresses in kPa
	-15.5 and -17.5 m respectively.	
		Before
	Calculated from base of layer above (or could calculate from	L1
	volumetric weights):	σ=215.5
	Layer 1	σ'=165.5
	$\sigma = 198.5 + 1 \times 17 = 215.5 \text{ kPa}$	L2
	p = 40 + 1x10 = 50 kPa	σ=249.5
	$\sigma^2 = 215.5 - 50 = 165.5 \text{ kPa}$	σ'=179.5
		L3
	Layer 2	σ=283.5
	$\sigma = 198.5 + 3x17 = 249.5 \text{ kPa}$	σ'=193.5
	p = 40 + 3x10 = 70 kPa	
	$\sigma^2 = 249.5 - 70 = 179.5 \text{ kPa}$	After
		L1
	Layer 3	σ=269.5
	$\sigma = 198.5 + 5x17 = 283.5 \text{ kPa}$	σ ² =219.5
	p = 40 + 5x10 = 90 kPa	L2
	$\sigma^2 = 283.5 - 90 = 193.5 \text{ kPa}$	σ=303.5
		$\sigma^{2}=233.5$
	Load applied is $3 \times 18 = 54$ kPa	L3
	Total and offertive stresses in success by this	$\sigma = 33/.3$
	I otal and effective stresses increase by this amount:	$\sigma = 247.5$
		1

2c	$\varepsilon = \frac{1}{c_p} \ln\left(\frac{\sigma}{\sigma_1}\right)$ $\frac{1}{16} \ln\left(\frac{219.5}{165.5}\right) = 0.0176, \text{ deformation} = 0.0176 \text{ x } 2 = 0.035 \text{ m}$ $\frac{1}{16} \ln\left(\frac{233.5}{179.5}\right) = 0.0164, \text{ deformation} = 0.0164 \text{ x } 2 = 0.033 \text{ m}$ $\frac{1}{16} \ln\left(\frac{247.5}{193.5}\right) = 0.0154, \text{ deformation} = 0.0164 \text{ x } 2 = 0.031 \text{ m}$	
	Total clay deformation = $0.035 + 0.033 + 0.031 = 0.099$ m	0.099 m
2d	$m_v = 1/C_p \sigma_1' = 1/(16x179.5) = 0.00035 \text{ kPa}^{-1}$	
	$c_v = k/\gamma_w m_v = 3.4 \times 10^{-8} / (10 \times 9.7 \times 10^{-6}) = 9.7 \times 10^{-6} \text{ m}^2/\text{s}$	
	can consider consolidation to be complete when consolidation	
	coeff is 1.74 (will also accept 2)	
	$c_v t_{99\%} / h^2 = 1.784$	1,644,273
	$t_{99\%} = 1,644,273$ seconds or 19 days	seconds or 19 days
	for consolidation $coeff = 2$:	uuys
	$t_{99\%} = 1,843,356$ seconds or 21 days	

Question No.	Workings	Answer
3a	$\gamma = W/V$	
	W = W(kg) * 10 = 628 / 1000 * 10 = 6.28 N	
	$V = 325 \text{ x} \pi \text{ x} 36^2 / 4 = 330 809 \text{ mm}^3 = 0.000331 \text{ m}^3$	18 98
	$\gamma = 6.28 / 0.000331 = 18984 \text{ N/m}^3 = 18.98 \text{ kN/m}^3$	kN/m ³
3b	Clay on sieve size 1 μ m, Silt on sieve size 2 μ m, Sand above Therefore V _{clay} = 8 ml, W _{clay} = 21 /1000 * 10 = 0.21 N	$V_{clay} = 8$ ml
	$V_{silt} = 32 \text{ ml}, W_{silt} = 81 / 1000 * 10 = 0.81 \text{ N}$	W _{clay} = 0.21 N
	$V_{sand} = (46+41+20+11) = 118 \text{ ml}, W_{sand} = (141+157+84+46) /1000 * 10 = 4.28 \text{ N}$	$V_{silt} = 32$ ml, W_{silt} = 0.81 N
		$V_{sand} =$ 118 ml $W_{sand} =$
2		4.28 N
30	Mass of Peat = $603 - 530 = 73$ g V = 73 / 1000 / 1100 x 100 ³ = 66.4 ml	$%_{0peat} = 20.1\%$
	$\%_{\text{peat}} = 66.4 / 331 \text{ x } 100 = 20.1\%$	% _{sand} =
	$%_{sand} = 118 / 331 \times 100 = 35.6\%$	35.6%
	Mass of water = $628 - 603 = 25\sigma$	$%_{0water} = 7.6\%$
	V = 25x1 = 25 ml	$\gamma_{0air} =$
	$\%_{\text{water}} = 25 / 331 \text{ x } 100 = 7.6\%$	24.6%
	V = 331 - (8+32+118+66.4-25) = 81.4 ml	
	$%_{air} = 81.4 / 331 \times 100 = 24.6\%$	
3d	$n = V_v / V$ = (25+81.4) / 331 = 0.235 * 100 = 32.1%	32.1% or 0.32

Question	Workings						Answer		
No.	-								
4a	0	100	200	Pressure, kPa	00	400			
	2	100	200	' 3	00	400			
		1.5							
	3					SAND			
						SAND			
	-8								
	ε								
	-1 New								
	Z Effective Pore total stress answer b) pressure FIRM CLAY								
	-23			<u> </u>					
			Effe	ective					
			stre	ess		SAND			
	-28 -								
				Tatal					
				lotal	Effectiv	e			
	NAP	PWP	_	stress	stress	_			
		0	0	0		0			
		-7	70	126		56			
		-9	90	158		68			
		-23	230	396		166			
		-28	280	486		206			
4b	This quest	ion is difficu	ılt – ge	enerous ma	rking.				
	1		8		8				
	Use Flamar	nt for either s	strip lo	ad or line lo	oad. Cou	ld also use			
	Newmark h	out would inv	volve r	nultiple dra	wings.				
					0				
	If use line l	oad must sta	te it is	due to clav	being 7r	n from surface.			
	Centre of se	oft clay.							
	NAP -8 m								
	Initial cond	litions from a	above						
	p = 80 kPa								
	$\sigma = 142 \text{ kPa}$								
	$\sigma' = 62 \text{ kPa}$	•							
	0 02 M u								
	In firm clay	(2 lavers)							
	NAP -12 5								
	For 12.5								
	n = 125 kP								
	$\sigma = 217.5 \text{ k}$								
	$\sigma^2 = 92.5 \text{ kH}$								
	0 <i>12.3</i> Ki								
	For 10.5 m								
	101 17.3 III								
	p = 155 Kra $\sigma = 336.5 \text{ kPa}$								
	σ^{-} 330.3 Kra σ^{2} - 141.5 kPa								
	$\sigma = 141.3 \text{ k}$	ara							

	$\sigma = \frac{2p}{\pi} \Big[arct$ z is depth and p = -5 x 18 + In this case z Change in st Layer 1 -22.7 Layer 2 -11.9 -6.5 For drawing					
4c	Change in stress (kPa)	Layer thickness (m)	C ₁₀	Strain	Deformation (m)	
		Layer 1	-	T		
	-22.7	2	6	-0.033	-0.066	
		Layer 2		1		0.000
	-11.9	7	17	-0.0035	-0.025	-0.099 m
	-6.5	7	17	-0.0012	-0.0084	Or 0.099m
	Total deforma Full marks h to wrong stre					