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Overview

A. Motivating example: A different mean

B. Deriving the Simple Kriging equations

C. Obtaining a covariance function from observations

D. Dissimilarities instead of similarity: the variogram

After conclusions: some extra slides.
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Busy trains

Most people experience trains to be busier than they really are, because most
people travel when its busy (that’s why it’s busy)
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http://www.about.ch/geography/climate/index.html

http://www.about.ch/geography/climate/index.html
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Bias and correlation problems

If you ask 1000 people how busy the trains are, the answer is biased towards
busy times.

If you only measure temperature
• in the valleys of Switzerland (where it is warmer)
• and not on the peaks (where it is colder)

you get biased observations as temperature is correlated to height.

Possible solution:
Assess and incorporate correlation into your method:
• by decreasing the influence of correlated observations
• by taking additional attributes (like height) into account
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A. A different mean
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Traditional Mean
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Correlation while interpolating

Height in m. above NAP

•

•
•

•
•

••
•

•
•
•×

(Source: www.ahn.nl/kaart)

Some red observation points are spatially correlated.
There are three correlated clusters: Utrechtse Heuvelrug, Flevoland and Ijsselvallei

This correlation should be taken into account when using such observations
for interpolating at, say, location ×.
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Mean, variance, covariance, correlation

theoretical experimental

mean E{z} =
R

z∈IR
zf(z)dz = µ z = 1

n

Pn

i=1 zi

variance var{z} = E{(z − E{z})2} σ2 = 1
n

Pn

i=1(zi − z)2

covariance c(zi, zj) = E{(zi − µ)(zj − µ)} cij = (zi − z̄)(zj − z̄)

correlation ρij =
cij

ci·cj

Note that:
• f(z): probability density function
• Variance σ2 is always positive

• Covariance assumes that mean z̄

exists
• Correlation ρij ∈ [−1, 1] is scaled

covariance
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Covariance function
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Covariance Function

cov(s) = 5 · e−s

Isotropic

Assumption. Stationarity of the first two moments

Assume the following holds for the height Z over some domain D

1. The (expected) mean of the height is the same, all over D.

2. The covariance between two locations pi and pj only depends on the
difference vector h := pj − pi, not on the locations itself

If these assumptions hold, the covariance function is defined and describes
the covariance as function of the 2D difference

Isotropy: covariance function depends only on distance, not on direction.
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Covariance function, theoretical.

Covariance function definition.

cov(h) = E{Z(p) · Z(p + h)} − µ
2

Covariance function properties.

1. cov(0) = var(Z(x)).

2. |cov(h)| ≤ cov(0).

3. cov(h) = cov(−h).

4. Covariances can become negative. (How??)

The covariance function gives a measure of similarity
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Correlated mean
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⇒ Correlated mean, z̄C = 0.16
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Uncorrelated mean: again
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Question. What is the solution of this system of linear equations?
Question. Does the solution change when we change cov(0) = 5 into, say,
cov(0) = 1?
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Redundancy matrix

Correlation/covariance between
observations:

⇒ Observations are not independent

⇒ Redundancies exist between
observations

Redundancy matrix C contains all
these redundancies.

Remark.
The redundancy matrix, given a
covariance function, only depends on
the locations of the observations
and not on the actual values of the observations
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First Conclusion and Further Questions

Conclusion: Redundancy matrix enables the division of weights over clusters
of observations.

Question. How to obtain a covariance function?
or/and, how to determine if correlation exist?

Question. Is any covariance function we come up with suited for our needs?

Question. How to derive such linear systems, what assumptions are made,
what optimization is aimed for?

Question. Can we get a quality description of the solution?

Question. What is the bad news?
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B. The (Simple) Kriging equations
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Stochastic interpolation framework

Given are
• n (height) observations z1, . . . , zn,
• at locations p1, . . . ,pn

in a spatial region of interest D.

D

Assumption:
The height signal z(p) for p in D is described by a random function

That is, the height at any location p ∈ D is described by a random variable zp

corresponding to a location dependent height signal distribution.

The random function z(p) for p ∈ D is the set of all local random variables
together.
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Conditions on the random function:

1) On points. Mean exists and is known, and its (expected) value is
independent of the location in D.

2) On pair of points. Covariance exists, is known and is location invariant

Wish:
A) We want to obtain an interpolation value ẑ0 at location p0 as a linear
combination

ẑ0 = w1 · z1 + w2 · z2 + · · · + wn · zn

of the n observations, interpreted as deviations of the mean.

B) This interpolation should moreover be optimal in the following sense:
the expected error variance is minimal.

Remark. Mean exists ⇒ no trend allowed in the data!
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Interpolation deviations of the mean

Deviation of the mean. Let µ be the given mean.

di := zi − µ

We are looking for weights w1, . . . , wn to obtain a height estimation ẑ0 at
location p0 as

ẑ0 = µ +

n
X

i=1

wi · (zi(pi) − µ)

= µ +

n
X

i=1

wi · di
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Interpolation error

The (signed) interpolation error, r0, is the difference between the real, but
unknown, height z0 and our estimation ẑ0:

r0 = ẑ0 − z0 = (ẑ0 − µ) − (z0 − µ)

= (µ +

n
X

i=1

wi · di − µ) − (z0 − µ) =

n
X

i=1

wi · di − d0

= d̂0 − d0
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The variance of the interpolation error

The variance of the error is given by

var(r0) = var(d̂0 − d0) (Lecture 5?: Variance of the sum)

= var(d̂0) + var(d0) − 2 · cov(d̂0, d0)

= (Expand d̂0)

=

n
X

i=1

n
X

j=1

wi · wj · cov(sij) + cov(0) − 2 ·

n
X

i=1

wi · cov(sij)

where
• cov: IR2 → IR2 indicates the (given) covariance function,
• sij := ‖pi − pj‖ denotes the horizontal distance between points pi and pj
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Interpolation goal

Remark. The following is known (given to us):

1. the observation locations, p1, . . . ,pn,

2. the estimation location, p0,

3. the covariance function, cov(.)

Therefore the error variance is just a function of the weights w1, . . . , wn.

Goal.
Determine those values of w1, . . . , wn that minimize the error variance var(r0)
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The Simple Kriging system

If the error variance var(r0) is minimal, all partial derivatives vanish:

(
1

2
) ·

∂ var(r0)

∂ wi

= 0, for i = 1, . . . , n

This gives us the Simple Kriging system
n

X

j=1

wj · cov(sij) − cov(si0) = 0, for i = 1, . . . , n

or, in matrix notation
0

B

B

B

B
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with cij = cov(sij), where sij = ‖pi − pj‖.
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Solving the Simple Kriging system

To determine: weight for each observation: (w1, w2, . . . , wn)T

Known, given a covariance function:

1) Redundancy matrix, as for "Kriging the mean", except now last row and
column are missing

2) Proximity vector, dn = (c01, c02, . . . , c0n), the covariances between
interpolation location and observations.
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Question. Why has "Kriging the mean" no proximity vector?



26

Dept. of Geoscience & Remote Sensing

The Simple Kriging variance

With C the redundancy vector and dn the proximity vector, the vector of
optimal weights wn = {w1, . . . , wn} is obtained as:

wn = C
−1 · dn

Substituting this optimal solution for the weights in the error variance
expression gives us a second result:

Simple Kriging error variance

varSK(p0) = cov(0) −

n
X

i=1

wi · cov(pi − p0) = cov(0) − wn · dn
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Remarks
Mr. Krige

The Simple Kriging variance only depends on the observation locations, not
on the actual values of the observations,

The SK variance is low near observations while it increases with increasing
distance to the observations

The SK variance is maximal when no correlation with the observations exists

Method only works if the variance-covariance matrix is invertible. This is guar-
anteed (Linear Algebra) if we use a positive definite covariance function to fill
the VC-matrix.
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SK interpolation and variance results

Simple Kriging interpolation
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Simple Kriging weights

Total weight = 0.86
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• Weights can be negative (esp. for observations ‘in the back‘)
• Weight is divided between the observations and the mean

(X: interpolation location)
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Influence covariance function
SK interpolation, short range
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Ordinary Kriging

Setting Simple Kriging:

1. Mean is known

2. Aim for deviations from the mean

In case mean is unknown: solve Ordinary Kriging system:
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Last row ensures
Pn

i=1 wi = 1; This condition is added to ensure that the
solution is unbiased. Locations as on Slide 23

Unbiasedness: E{z} = z̄ for all z in domain D.
Expected value of z equals the (unknown) mean of z over D.
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Ordinary Kriging interpolation & Variance

For an estimation of the height ẑ0 from observations z1, . . . , zn.
(

ẑ0 = w1 · z1 + · · · + wn · zn

var(ẑ0) = cov(0) − wn · dn

Here wn is the vector of weights, and dn the proximity vector.
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C. Obtaining a covariance function
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Experimental covariance function, I
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Experimental covariance function, II

1) Determine experimental covariances

[‖pi − pj‖, (zi − µ)(zj − µ)]

as function of distance, for (a suitable subset of) all pairs of observations

2) Average the obtained experimental covariances per suited bin −→
experimental covariogram

3) Fit an admissible covariance model to the experimental covariogram −→
covariance function

Definition. A covariance model is admissible if for any choice of model
parameters the obtained covariance function is positive definite
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Covariance function models

Admissable covariance models:

Exponential model with practical range a

cov(h) = exp(
−3h

a
)

Spherical model with range a

cov(h) =

(

1 − 1.5h
a

+ 0.5(h
a
)3 if h ≤ a

0 else

Gaussian model with practical range a

cov(h) = exp(−
3h2

a2
)

Nugget model

cov(h) =

(

1 if h = 0

0 else
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Covariance function parameters

Range: distance at which covariance/correlation is vanished.

Sill: initial covariance, i.e. covariance at very short distance. Scale the
functions of the previous pages vertically using the sill!

0 0.2 0.4 0.6 0.8
Distance between observations

-0.04

0

0.04

0.08

Cov

Fitted covariance function

↑ Range

Sill →
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Variogram: increasing dissimilarity

Variogram definition.

γ(h) =
1

2
E{(Z(p + h) − Z(p))2}

Variogram properties.

1. γ(0) = 0.

2. γ(h) ≥ 0.

3. γ(h) = γ(−h).

4. lim|h|→∞
γ(h)

|h|2
= 0.

The variogram measures the
average dissimilarity
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Relation Variogram/Covariance function

Claim. Uniform mean and covariance ⇒ γ(h) = cov(0) − cov(h).

Proof.

γ(h) =
1

2
E{(Z(p) − Z(p′))2}

=
1

2
E{((Z(p) − µ) − (Z(p′) − µ))2}

=
1

2
E{(Z(p) − µ)2} +

1

2
E{(Z(p′) − µ)2}

−E{(Z(p) − µ)(Z(p′) − µ)}

= E{(Z(p) − µ)2} − E{(Z(p) − µ)(Z(p′) − µ)}

= cov(0) − cov(s)

¤

The Variogram is a well-known alternative for the covariance function.
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Experimental variogram + Cov. function

Example
Variogram
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Conclusions

Kriging is the best interpolation technique in a particular sense, provided that
the variances of and covariances between observations are known.

Kriging takes correlation between (nearby) observations into account, using
• A covariance function, or,
• A variogram

Kriging not only provides an estimate but also a variance of that estimate

Different Kriging dialects exist, used depending on the available information.
Discussed here:

1. Kriging the mean (estimating the mean)

2. Simple Kriging (mean is known)

3. Ordinary Krigng (mean is unknown)
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Appendix: some Bonus slides
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Experimental variation and variogram.

Dissimilarity between two observations zi and zj :

γij =
(zi − zj)

2

2
=

(zi(pi) − (zj(pj))
2

2

Determine all dissimilarities
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Anisotropic case.

Topography
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Variogram models
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Moreover: linear model, nugget model.
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Our example.
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Exactness

Claim.

1. Ordinary Kriging is exact, that is, OK respects observations.

2. The variance at an observation location equals zero.

Proof.

1. W.l.o.g. assume that p1 = p0. Then the OK system reads
0
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...
...

. . .
...
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1 1 . . . 1 0
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Clearly, w = {1, 0, 0, . . . , 0} is a solution. As the redundancy matrix is
non-singular, this is the unique solution. One word alternative proof??

2. Var{ẑ0 − z0} = cov(0) −
Pn

i=1 wiCi0 − λ = cov(0) − C00 = 0.
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OK as interpolator

1. Input:
- observations Oz = {z1, . . . , zn} at obs. locations Ox,y = {p1, . . . , pn}.
- interpolation locations Qx,y = {q1, . . . , qm}.

2. Determine an exp. covariance function expcov from Oz and Ox,y.

3. Fit a positive definite covariance model cov to expcov.

4. Determine the redundancy matrix Cn, by applying cov to the distances
between the observation locations.

5. For every location qj in Qx,y:
• Determine the proximity vector dn by applying cov to the distances
{‖qj − p1‖, . . . , ‖qj − pn‖}.

• Find weights w1(qj), . . . , wn(qj) by solving the OK-system Cn ·wn = dn.

• Get estimation and estimation variance by
(

ẑj = w1(qj) · z1 + · · · + wn(qj) · zn

var(r̂j) = cov(0) − wn · dn

Question: assumption???
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Interpolation example.

Cn =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0.66 0.14 0.03 0 0 0 1

0.66 1 0.21 0.04 0 0 0 1

0.14 0.21 1 0.20 0 0 0 1

0.03 0.04 0.20 1 0.02 0 0 1

0 0 0 0.02 1 0.01 0.01 1

0 0 0 0 0.01 1 0.94 1

0 0 0 0 0.01 0.94 1 1

1 1 1 1 1 1 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

-5 5 10 15 20

-2

-1

1

2

Prediction

Prediction variance

Remarks. Exactness, vanishing variance, Kriging the mean.
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Exercises
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Exercise, 1D Kriging

0 2 4 6 8

0

1

2

3

4

Exercise 7.1 In the figure, the points p1 = (1, 1), p2 = (2, 2), p3 = (4, 3), p4 = (4.5, 4), and
p5 = (6, 2.5) are shown. Think of these points as the result of measuring some signal as function of
time in seconds. In addition a covariance function c(t) = e−2t is given

a). Is this covariance function admissable? Why?

b). Sketch c(t). What are its extrema?

c). What is the covariance between two observations that are 1 second apart?

d). After what time drops c(t) below one tenth of its maximal value?

e). How would you define the range and sill for this covariance function?
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Exercise, continued

0 2 4 6 8

0

1

2

3

4

Exercise 7.2 Continuation of Exercise 3.1

a). Determine the covariances between each of the five measurements in the figure. What is the
maximum covariance?

b). Convert these covariance into correlations.

c). Write down the Ordinary Kriging (OK) redundancy matrix of the five measurements in the figure.

d). What is the OK proximity vector for an interpolation at t = 3?

e). And what is the OK proximity vector for an interpolation at t = 4?

f). Use Ordinary Kriging to interpolate at t = 4. How are the weights distributed over the
observations? What is the sum of the weights?

g). (Matlab) Use Ordinary Kriging to interpolate at t = 3. What are the weights now?

h). (Matlab) Use Ordinary Kriging to interpolate the interval t = [0, 8].
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Answers, Exercise 7.1

a) The function is admissable, the exponential
function has been tested by mathematicians and
is positive definite. This means that when you
use c(t) for filling a redundancy matrix, this
matrix will always be invertable.

b) →

c) Fill in t = 1 in the covariance function:
c(1) = 1/e2 = 0.135

d) Read from the graph (or use computer):If
t = 1.15, then c(t) = 0.1

e) Range: about 2, as after t = 2, c(t) is very

small. Sill: 1 as c(0) = 1
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Answers, Exercise 7.2

f) See matrix on the right. Observations are
ordered from left to right. Max. covariance is 1
(on the diagonal, the self-covariances or
variances). The max. covariance between
different observations is 0.37, between obs 3
and obs 4.

g) These are allready correlations, variance on
the diagonal is 1.

h) To get OK redundancy matrix: add extra row &
column with notably ones to the result from f).

i) Proximity vector for t = 3, first the general
function, followed by the proximity vector for
t = 3. The last entry, 1, belongs to Ordinary
Kriging.

j) Proximity vector for t = 3. Note an observation
has been done at t = 4, so the 3rd entry is now
1 as well.
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Answers, Ex. 7.2 (continued)

k) Ordinary Kriging for interpolation at t = 4.
Easy, as we have an observation at t = 4 and
because OK is exact, it simply reproduces the
observation. Therefore the interpolated value
equals 3 (= value of observation). The weight of
this observtaion is 1, the weights for other
observations are zero.

l) Now we do have to work: Multiply the inverse
of the redundancy matrix with the proximity
vector for t = 3

weights3 = Inverse[redmatD].proc[3]

Weights are appr. w1 = 0.16; w2 =

0.29; w3 = 0.26; w4 = 0.12; w5 = 0.17; To
get the interpolation result: multiply weights with
observations. Final result: 2,43. Note we didn’t
use the last entry of the weight vector, the -0.18.

m) Same procedure as for parts k) and l), but

now for every value of t. Note that the

interpolation result indeed passes through the

observations (exactness):
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