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Least Squares

Least Squares
• Measurement redundancy
• Optimal fit
• Minimizing fit error
• Least Squares Solution

Fit examples
• Velocity example
• Plane examples
• Curve fitting
• Changes in the Texel dunes

Weighted least squares
• incorporating measurement quality
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Digital Terrain Analysis

First start: look at planes!

Planes give you:

• Surface Approximation

• Surface Orientation

• Surface Slope

• Surface Roughness

Later: look at derivatives.

Image source: http://www.sciencedirect.com/science/article/pii/S1365160912001724

http://www.sciencedirect.com/science/article/pii/S1365160912001724
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A. Least Squares
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Least Squares References

Linear Algebra and its applications, Lay, D.C.,
3rd edition, Addison Wesley (2003).
Notably Chapter 6.5: Least-Squares Problems

Primer on Mathematical Geodesy, C.C.J.M. Tiberius,
TU Delft, Faculty of Civil Engineering and Geosciences, (2014).
Available as pdf via Blackboard
(Notably Chapter 4)
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Gauss: measuring the Earth

Source http://www.ajaloomuuseum.ut.ee/vvebook/pages/8$_$1.html

http://www.ajaloomuuseum.ut.ee/vvebook/pages/8$_$1.html
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Measurement Redundancy

Question.
How many points in 3D are needed
to estimate a plane?

Question.
How many parameters are needed to
fix an arbitrary plane in 3D?

The (measurement) redundancy is:
• the number of observations, m,

used for an estimation
• minus the number of parameters,

n, used to desribe the geometric
model

Often, m >> n.

Example.
Wooden (planar) beam face sampled
by 50 000 laser scan points.
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Redundancy in triangulation networks

Measuring more then strictly necessary enables error identification
Source https://confluence.qps.nl/display/KBE/Howto+Computation+Setup

https://confluence.qps.nl/display/KBE/Howto+Computation+Setup
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Linear system

Input: m measurements y1, y2, . . . , ym

Output: (Wished) n parameters x1, . . . , xn

Assumption: Measurements have a linear relationship with the parameters.

That is, for each yi, i = 1, . . . , m we may write

yi = ai1x1 + ai2x2 + . . . ainxn

To establish the relation: determine the unknown values of the coefficients

aij , with i = 1, . . . , m and j = 1, . . . , n

In matrix form: with A = aij the matrix of coefficients, y = {y1, . . . , ym} the
vector of observations, and x = {x1, . . . , xn} the parameter vector we get:

y = Ax
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Least Squares

y - Vector of observations
A - Model matrix
x - Vector of model parameters
e - Vector of residuals, or, mismatches between observations and model

Given: the observations

Assumed: a model, describing the physical or mathematical reality or
geometry, so

y = A · x + e

Wanted: best choice for the parameters of the model
⇒ Minimize the errors in some sense

Definition. Best: Minimize the squares of the errors: eT · e
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Covered distance example

Source http://personapaper.com/article/26547-100-miles-in-90-days---final-progress-report

http://personapaper.com/article/26547-100-miles-in-90-days---final-progress-report


12

Dept. of Geoscience & Remote Sensing

Velocity Example

The covered distance d(t) is assumed to depend linearly on the constant
velocity:

d(t) = v · t

Suppose covered distances y1, y2 and y3 are observed at moments t = 2,
t = 3 and t = 4. What was the velocity v?

[Proof.]

y =

0

B

B

@

y1

y2

y3

1

C

C

A

, and A =

0

B

B

@

2

3

4

1

C

C

A

, and x = x = v

⇒

e = y − A · x =

0

B

B

@

y1 − 2v

y2 − 3v

y3 − 4v

1

C

C

A

We try to minimize the mean error in the least squares sense:
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Solution velocity example

[Proof.] So find v such that

e
T
e(v) = (y1 − 2v)

2
+ (y2 − 3v)

2
+ (y3 − 4v)

2

is minimal. The expression e
T
e(v) has a minimum ⇒

d

dv
e

T
e(v) = 0

−2[(y1 − 2v)2 + (y2 − 3v)3 + (y3 − 4v)4] = 0

Or, after reordering:

2y1 + 3y2 + 4y3 = 2 · 2v + 3 · 3v + 4 · 4v

So,

v =
2y1 + 3y2 + 4y3

2 · 2 + 3 · 3 + 4 · 4
=

AT
y

AT A



14

Dept. of Geoscience & Remote Sensing

Illustration, velocity example

[Proof.] Take y1 = 11, y2 = 20 and y3 = 29. Then

e
T
e(v) = (y1 − 2v)

2
+ (y2 − 3v)

2
+ (y3 − 4v)

2

= 1362 − 396v + 29v
2
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Adjusted constant velocity

[Proof.] d
dv

e
T
e = 58v − 396 = 0 ⇒ v ≈ 6.83.
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Least Squares Geometry

Model is spanned by A. Every
choice for parameter vector x

corresponds to another location in
the model space of A.

Observations y are generally not in
the model space of A.

Goal: Find point x̂ in model space
that minimizes distance to
observations y.

Solution: the perpendicular
projection of y in the model space,
the adjusted vector of observations
ŷ = A · x̂

A.x

y
y
`

e
`

0
5

10
15

x

0

10

20
y

0

10

20

30

z

Shortest vector between observations y and adjusted observations ŷ is the
error vector ê: ê = y − ŷ
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Example: Errors in observed distances

[Proof.] We got v ≈ 6.83. Therefore the corrected or adjusted distances are:

ŷ =

0

B

B

@

13.66

20.48

27.31

1

C

C

A

And the errors, or the differences between observed and corrected distances:

e = y − A · x =

0

B

B

@

y1 − 2v

y2 − 3v

y3 − 4v

1

C

C

A

=

0

B

B

@

11 − 2 · 6.83

20 − 3 · 6.83

29 − 4 · 6.83

1

C

C

A

=

0

B

B

@

−2.66

−.48

1.69

1

C

C

A
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Least Squares Principle

Project vector of observations into model, that is, error vector ê should be
perpendicular to model space:

AT · ê = 0

or

AT · (y − Ax̂) = 0

AT
y − AT Ax̂ = 0

AT
y = AT Ax̂

Which gives the general solution

x̂ = (AT A)−1AT
y
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Least Squares - Calculus

Let y ≈ Ax with A an m × n matrix of rank(A) = n. The least squares
solution of the system y ≈ Ax is defined as

x̂ = arg minx∈IRn(y − A · x)T (y − A · x)

The difference between the vector of observations y and the adjusted vector
of observations ŷ = Ax̂ is the least squares residual vector

ê = y − A · x̂

The size of the squared norm

‖ê‖2 = ê
T · ê

is a scalar measure for the inconsistency of the linear system.

Question What is ê in case the system is consistent?
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Least Squares - Solution

The least squares solution of the linear system on the previous slide is given
by

x̂ = (AT A)−1AT
y

[Proof.] Consider the function

f(x) = (y − Ax)
T

(y − Ax)

= y
T
y − 2y

T
Ax + x

T
A

T
Ax

x̂ minimizes f(x) ⇒
1. ∇f = 0 (x̂ is a singular point).

2. The Hessian of f is positive definite. (The singular point is a minimum).

The gradient of f(x) is given by: ∇f = −2AT
y + 2AT Ax and the Hessian of f(x) by

H(f) = 2AT A. The H(f) is a quadratic form and therefore positive definite for all x, so the solution
of ∇f = 0 is indeed the minimum.

∇f = 0 implies AT Ax = AT
y. Because the matrix AT A is positive definite, it is also invertible, so

the solution follows as x̂ = (AT A)−1AT
y.
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A more complicated A model

Source www.adformatie.nl Source http://www.be.wednet.edu/Page/2720

www.adformatie.nl
http://www.be.wednet.edu/Page/2720
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Second Velocity Example

The position of a car is assumed to depend linearly on the unknown
(constant) velocity v:

xi = x0 + v · ti i = 1, . . . , m

with
xi - the distance measurement at time ti, and
x0 - the unknown initial position of the car.

How do we formulate the estimation of velocity and initial position as a least
squares problem?

General Recipe
• What is your vector of observations?
• Identify the parameters that you want to estimate
• Examine how these parameters relate to the observations
• Use this relation to fix the model matrix A

• Check: are all dimensions OK?
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Solution

[Proof.]

y =

0

B

B

B

B

B

B

@

x1

x2

...

xm

1

C

C

C

C

C

C

A

≈

0

B

B

B

B

B

B

@

1 t1

1 t2

...
...

1 tm

1

C

C

C

C

C

C

A

·
 

x0

v

!

= A · x

and the solution is given by x̂ = (AT A)−1AT
y
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Numerical second velocity example

Assume for example:
x1 = x2 = 1 at t = −1, 1 and,
x3 = 3 at t = 2.

[Proof.]

y =

0

B

B

@

1

1

3

1

C

C

A

≈

0

B

B

@

1 −1

1 1

1 2

1

C

C

A

·
 

x0

v

!

= A · x

Therefore

A
T

A =

 

3 2

2 6

!

, and A
T
y =

 

5

6

!

So,

x̂ =

 

x̂0

v̂

!

=
1

7

 

9

4

!

, ŷ =
1

7

0

B

B

@

5

13

17

1

C

C

A

and ê = y − ŷ =
1

7

0

B

B

@

2

−6

4

1

C

C

A

Note that indeed ê is orthogonal to the columns of matrix A!
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Sum of squared errors
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a1: 1st column of matrix A

a2: 2nd column of matrix A

Everything blue: in R(A)
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B. Plane Fitting
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Local 3 x 3 window

Input:
raster file/regular grid of elevations

Output:
• Local normal
• Local roughness

Method:
Local planar fit

Question. What is the effect of choosing a larger (e.g. 6 × 6) window size?

Question. How do you get the local normal?

Question. How do you get the/a local roughnes
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Variance or Glacier Roughness

Hintereisferner - Tirol

Variance window

(Images: Martin Kodde)
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Local normals

Here computed for a simulated TIN (Triangulated Irregular Network)

Source http://www.mathworks.com/matlabcentral/fileexchange/authors/37194

http://www.mathworks.com/matlabcentral/fileexchange/authors/37194
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Example, 3x3 window

Given: Elevation data ⇒

Obtain an equation of the best fitting
plane

z = a · x + b · y + c

From that, derive:

1. Normal: vector n = (a, b,−1)T

2. Rougness: deviations from the
local plane

7.2 7.2 6.7

7.6 7.4 7.5

7.7 7.9 8.3

1 2 3

1

2

3

Exercise
Obtain the plane equations, the normal and the roughness using the least
squares framework
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Resulting plane

Black points : input elevations

Blue plane: plane fitting the
elevations best in the least squares
sense

Blue points: adjusted elevations

Brown lines: elevation residuals

Red arrow: surface normal
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Results, planar fit, wooden beam

[m]

Plot shows beam points, adjusted to plane by least squares
The coloring indicates the absolute size of the error ei
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3D Results, planar fit, wooden beam

[m]

Plot shows original 3D beam points, with coloring indicating the absolute size
of the error ei.

Question. What 3 choices did the fitter had to choice as vector of observa-
tions?
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Distribution of LSQ adjustment errors

Question. Why are the errors distributed around zero?

Question. Why is the (cropped) histogram not symmetric? Are the residuals
normally distributed?

Question. What does the histogram tell us on the quality of the
measurements?

Question. How to determine the sample standard deviation of the residuals?
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C. Least Squares Curve fitting
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Introduction Weather data
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Mean daily temperature in Rotterdam in 2001, in deg. C.
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In red: mean temperature in 2001

Question: How do we use Least Squares to estimate the mean temperature
in 2001?

[Proof.] For i = 1, . . . , 365 write

yi = 1 · x,

so, y = {y1, . . . , y365}T , x = {x}, and A = {1, 1, . . . , 1}T . Now x̄ = (AT A)−1AT
y = 10.6◦.
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Fitting polynomials

How can we fit a general (not necessarily linear) polynomial to the weather
data?

Write, with Ti = yi, the temperature at day ti = 1, . . . , 365,

Ti = a0 + a1ti + a2t
2

i + a3t
3

i + . . .

Question: what is the vector of observations, the parameter vector and the
A-matrix?

[Proof.] so, y = {T1, T2, . . . , T365}T , x = {a0, a1, a2, . . . , }T and

Ai = {1, ti, t
2
i , t

3
i , . . . }, for i = 1, . . . , 365

= {1, i, i
2
, i

3
, . . . }

Question: what is the redundancy of the resulting least squares system?
[Proof.] Nr. observations - Nr. parameters = 365 - (degree of polynomial + 1)
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Result: polynomial of degree 2

0 50 100 150 200 250 300 350
-5

0

5

10

15

20

25
LSQ fit of a0 + a1.t + a2t^2
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80

Histogram, Residuals, 2nd degree polynomial fit

p

(eT e)/365 = 3.7

x̂ ≈ (−2.90, 0.19,−0.00048)T

Question: Other method to check whether this A-model fits well?
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General curve fitting

Suppose f(t) is an unknown function of which we measure m function values

yi ≈ f(ti) i = 1, 2, . . . , m

It is considered known that f(t) can be written as a linear combination of n
base functions:

f(t) =

n
X

j=1

cjφj(t),

with cj the coefficient that expresses the contribution of base function φj(t) to
f(t).

The vector of coefficients

x = {c1, c2, . . . , cn}

is estimated by solving the following Least Squares system:
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Estimating base coefficients

Solve y = Ax, given by
0

B

B

B

B

@

f(t1)

f(t2)
...

f(tm)

1

C

C

C

C

A

=

0

B

B

B

B

@

φ1(t1) φ2(t1) . . . φn(t1)

φ1(t2) φ2(t2) . . . φn(t2)
...

...
...

φ1(ti) φ2(ti) . . . φn(ti)

1

C

C

C

C

A

0

B

B

B

B

@

c1

c2

...
cn

1

C

C

C

C

A
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Fitting trigonometric function

How to fit
h(t) = a0 + a1 cos(ωt) + a2 sin(ωt) :

to the annual weather data:

1. What is ω?

2. What value of ω should we take?

3. What is the A-model?

[Proof.]

1. ω is the ‘angular velocity‘ and determines the period of the trigonometric function. If ω = 1, the
period T is 2π. So, in general T = (2π)/ω.

2. For the weather data, we have T = 365. So we should take

ω = (2π)/T = (2π)/365 = π/182.5.

3. The i-th column of the A-matrix reads:

Ai = (1, cos(ωi), sin(ωi))



41

Dept. of Geoscience & Remote Sensing

Trigonometric fit results
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LSQ fit of a0 + a1.cosHΩtL + a2.sinHΩtL
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Histogram, Residuals, trig series

p

(eT e)/365 = 3.04 x̂ ≈ (10.6,−6.83,−3.54)T
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Trigo questions

Question: Why is a0 similar to the mean temperature in 2001?

[Proof.] Model is the mean + seasonal deviation from the mean

Question: Why can we conclude in this special case that our trigonometric
model fits better than the polynomial of degree 2?
[Proof.] Redundancy is the same

Question: can we also obtain ω using least squares fitting?
[Proof.] No, we used an ad-hoc method to obtain a value for ω
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D. Texel case study
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Case study: South-West Texel

Airborne laser data from 1996 to
2001 covering beach and dunes.

year # heights
1996 224 521
1997 3 577 200
1998 1 054 817
1999 607 860
2000 2 914 654
2001 2 810 642
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Source: www.kustfoto.nl
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Different ground-points in distinct years.

Grid-point wise analysis after
interpolation to regular grid.
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Single position modeling.

Assume that for every grid point position (x, y) a full observation vector
h ∈ IRm is given

We look for a linear model A such that

h =

0

B

B

B

B

@

h96

h97

...
h01

1

C

C

C

C

A

, E{h} = A · x,

where x ∈ IRn denotes the vector of model parameters.
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Model expressing no deformation

Question: what A model expresses stability?
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Kinematic model alternatives.
Constant velocity model Instanteneous suppletion model

h

v

h

s

A =

0

B

B

B

B

B

B

@

t1 1

t2 1

...
...

tm 1

1

C

C

C

C

C

C

A

, x =

 

v

h

!

; A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0

...
...

1 0

1 1

...
...

1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, x =

 

h

s

!

.

h = height; v = velocity; s = suppletion.

Question: Other 2-parameter models??
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Example: 2500 velocities and residuals.

564300

564400
110450 110500 110550

-0.5

0.0

0.5
m/yr

564300

564400
110450 110500 110550

0

1

2

3

RMSE

m

Number of ‘observations’ per grid-point: m = 7

Number of model parameters: n = 2

Redundancy: q := m − n = 5.
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Conclusions

Plane fitting
• Easy starting point for e.g. terrain analysis
• Gives surface approximation, orientation and a measure of roughness
• Use a lot or less points for a fit

Least Squares
• Method to incorporate redundant observations in geometric fitting
• Minimizes error in the least squares sense
• Model used to fit may be more or less appropriate
• So far, didn’t incorporate quality of observations
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Exercises

Exercise 6.1 Find the least-squares solution of the following two linear systems of equations:

x1 + 2x2 = 5

2x1 − x2 = 0

5x1 + x2 = 6

2x1 + 4x2 − 3x3 = 8

x1 + x2 − x3 = 3

2x1 − 2x2 + 3x3 = −1

Exercise 6.2 Consider the linear system of equations y ≈ Ax with

matrix A =

0

B

B

@

1 2

1 3

0 0

1

C

C

A

, and vector y =

0

B

B

@

4

5

6

1

C

C

A

Find the least-squares solution x̂ and the projection ŷ of vector y onto the column space of A.
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Exercises

Exercise 6.3 Consider the inconsistent linear system of equations y ≈ Ax with

matrix A =

0

B

B

@

1 −1

1 0

1 1

1

C

C

A

, and vector y =

0

B

B

@

4

5

9

1

C

C

A

Let ŷ be the projection of vector y onto the column space of A, i.e., the least-squares solution of the

‘measurements‘ y. Find the least-squares residual vector ê = y − ŷ.

Exercise 6.4 An object is moving along a straight line. The following measurements yi of the
object’s position have been made at corresponding times ti.

Time ti, in [s] -1 0 1 2

Position yi, in [m] 2 0 -3 -6

To the data a parabolic model y = x0 + vt + 1
2 at2 is fitted using least squares. What is the

(unweighted) least squares solution for the acceleration a?
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Exercises

Exercise 6.5 An object is moving along a straight line. The following measurements yi of the
object’s position have been made at corresponding times ti.

Time ti, in [s] -1 0 1 2

Position yi, in [m] -2 0 3 5

To the data a linear model y = x0 + vt is fitted using least squares. Find the (unweighted) least

squares solution for the speed v?
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Exercises

Exercise 6.6 The monthly sales of a certain product are subject to seasonal fluctuations. The
sales data might be modeled by a function of the form

y = x1 + x2(t) + x3 sin(2πt/12)

with t the time in months. The term x1 + x2t gives the basic sales trend, whereas the term
x3 sin(2πt/12) is representing the seasonal changes, see figure below.

Assume that sales data yi are available at times
t1, t2, . . . , tm . Find the design matrix of the
linear system of equations that leads to a
least-squares fit of

y = x1 + x2(t) + x3 sin(2πt/12)

to the sales data.
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Exercises

Exercise 6.7 Consider an airplane taking laser height measurements. In part of the surveyed area
gas is extracted from the subsurface. The airplane flies along a straight line. It takes measurements
at positions x = 0, 2, 4, 6 and 8 km along this line. The measurements taken are distances hi from
the airplane to the ground and are listed below:

xi (m) 0 2000 4000 6000 8000

hi (m) 50.334 50.595 51.144 55.226 58.648

From independent measurements it is known that the area is flat from 0 m to xstart = 3000m. From
xstart on the area is subsiding due to the gas extraction. This subsidence shows a linear behavior,

h = c0 + c1(x − xstart).

Apply least-squares curve fitting to the data to determine the slope c1 in the area x > xstart.
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Exercise, plane fitting

Exercise 6.8 In this exercise we will fit a plane using least squares to the following 3D points:

p1 = (1, 1, 7.2), p2 = (2, 1, 7.2), p3 = (3, 1, 6.7), p4 = (1, 2, 7.6), p5 = (2, 2, 7.4),
p6 = (3, 2, 7.5), p7 = (1, 3, 7.7), p8 = (2, 3, 7.9), p9 = (3, 3, 8.3)

Compare also Slides 29 and 30.

a). What is the number of observations, and how many parameters need to be estimated?

b). What is the vector of observations y in this case?

c). What is the vector of (yet unknown) plane parameters x?

d). Rewrite the plane equation z = a · x + b · y + c as an inner product z = rA · (a, b, c). So
notably, how does the vector rA looks like?

The only ingredient still needed for a least squares fit is the model matrix A. The i-th row of this
9 × 3 matrix is a copy of the vector rA corresponding to the i-th observation. For example, the sixth
row of the A matrix looks like A6 = (3, 2, 1).

e). Write down the full model matrix A.

f). Now get the plane parameters x̂ by solving

x̂ = (A
T

A)
−1

A
T
y

Hint: this can be easily done in Matlab: http://www.mathworks.nl/help/matlab/ref/mldivide.html

http://www.mathworks.nl/help/matlab/ref/mldivide.html
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Exercise, Plane fitting, continued

Exercise 6.9 This exercise is a continuation of Exercise 6.8. In the following we will use the plane
parameters to evaluate the quality of fit and to obtain a normal of the plane.

a). Determine the vector of adjusted observations

ŷ = A · x̂

b). Where are the adjusted observations situated?

c). Determine the vector of residuals ê, i.e. the distances between observations and adjusted
observations:

ê = y − ŷ

d). Determine the standard deviation of your plane fit result by determininig

σ =

√
êT · ê
n

,

where n denotes the number of observations.

e). Determine a normal nP of the plane from the plane parameter vector x̂.

f). Verify that nP is indeed a normal by evaluating the inner product with two independent vectors in
the plane P . Take for example two suitable difference vectors between adjusted observations.
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Answers, Exercise 6.1

Find the least-squares solution of the following two linear systems of
equations:

x1 + 2x2 = 5

2x1 − x2 = 0

5x1 + x2 = 6

2x1 + 4x2 − 3x3 = 8

x1 + x2 − x3 = 3

2x1 − 2x2 + 3x3 = −1

[Proof.] 1st system

A =

0

B

B

@

1 2

2 −1

5 1

1

C

C

A

, y =

0

B

B

@

5

0

6

1

C

C

A

, A
T

A =

 

30 5

5 6

!

, A
T
y =

 

35

16

!

 

x̂1

x̂1

!

= (A
T

A)
−1

A
T
y =

 

0.84

1.97

!
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Answer, 2nd system

[Proof.]

A =

0

B

B

@

2 4 −3

1 1 −1

2 −2 3

1

C

C

A

, y =

0

B

B

@

8

3

−1

1

C

C

A

So

A
T

A =

0

B

B

@

9 5 −1

5 21 −19

−1 −19 19

1

C

C

A

, A
T
y =

0

B

B

@

17

37

−30

1

C

C

A

Therefore

 

x̂1

x̂1

!

= (A
T

A)
−1

A
T
y =

0

B

B

@

1.5

0.5

−1

1

C

C

A
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Answers, Exercise 6.2

Consider the linear system of equations y ≈ Ax with

matrix A =

0

B

@

1 2

1 3

0 0

1

C

A
, and vector y =

0

B

@

4

5

6

1

C

A

Find the least-squares solution x̂ and the projection ŷ of vector y onto the
column space of A.

[Proof.]

A
T

A =

 

2 5

5 13

!

, A
T

=

 

1 1 0

2 3 0

!

, A
T
y =

 

9

23

!

Therefore

 

x̂1

x̂1

!

= (A
T

A)
−1

A
T
y =

 

2

1

!

, and ŷ = y − Ax̂ =

0

B

B

@

4

5

0

1

C

C

A
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Answers, Exercise 6.3

Consider the inconsistent linear system of equations y ≈ Ax with

matrix A =

0

B

@

1 −1

1 0

1 1

1

C

A
, and vector y =

0

B

@

4

5

9

1

C

A

Let ŷ be the projection of vector y onto the column space of A, i.e., the
least-squares solution of the ‘measurements‘ y. Find the least-squares
residual vector ê = y − ŷ.

[Proof.]

 

x̂1

x̂1

!

=

 

6

2.5

!

, ŷ =

0

B

B

@

3.5

6

8.5

1

C

C

A

, ê =

0

B

B

@

0.5

−1

0.5

1

C

C

A
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Answers, Exercise 6.4

An object is moving along a straight line. The following measurements yi of
the object’s position have been made at corresponding times ti.

Time ti, in [s] -1 0 1 2
Position yi, in [m] 2 0 -3 -6

To the data a parabolic model y = x0 + vt + 1

2
at2 is fitted using least squares.

What is the (unweighted) least squares solution for the acceleration a?

[Proof.]

8

>

>

>

>

<

>

>

>

>

:

2 = x0 + (−1)v + 1
2 (−1)2a

0 = x0 + 0v + 1
2 (0)2a

−3 = x0 + 1v + 1
2 (1)2a

−6 = x0 + 2v + 1
2 (2)2a

PTO
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Answers, Exercise 6.4, continued

[Proof.] So,

A =

0

B

B

B

B

@

1 −1 1
2

1 0 0

1 1 1
2

1 2 2

1

C

C

C

C

A

, y =

0

B

B

B

B

@

2

0

−3

−6

1

C

C

C

C

A

x̂ =

0

B

B

@

x̂0

v̂

â

1

C

C

A

=

0

B

B

@

−.15

−2.45

−.5

1

C

C

A
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Answers, Exercise 6.5

An object is moving along a straight line. The following measurements yi of the object’s position have
been made at corresponding times ti.

Time ti, in [s] -1 0 1 2

Position yi, in [m] -2 0 3 5

To the data a linear model y = x0 + vt is fitted using least squares. Find the (unweighted) least

squares solution for the speed v?
[Proof.]

8

>

>

>

>

<

>

>

>

>

:

−2 = x0 + (−1)v

0 = x0 + 0v

3 = x0 + 1v

5 = x0 + 2v

So y = (−2, 0, 3, 5)T and A =

0

B

B

B

B

@

1 −1

1 0

1 1

1 2

1

C

C

C

C

A

. Therefore x̂ = (AT A)−1AT
y = (0.3, 2.4)T .

We are looking for the speed, which is the 2nd parameter, so the answer is v = 2.4.
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Answers, Exercise 6.6

The monthly sales... Find the design matrix ... to the sales data

A =

0

B

B

B

B

B

B

@

1 t1 sin(2πt1/12)

1 t2 sin(2πt2/12)

...

1 tm sin(2πtm/12)

1

C

C

C

C

C

C

A

, y =

0

B

B

B

B

B

B

@

s1

s2

...

sm

1

C

C

C

C

C

C

A

, and x =

0

B

B

@

x1

x2

x3

1

C

C

A
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Answers, Exercise 6.7

Consider an airplane taking laser height measurements. In part of the surveyed area gas is extracted from the subsurface. The airplane flies
along a straight line. It takes measurements at positions x = 0, 2, 4, 6 and 8 km along this line. The measurements taken are distances
hi from the airplane to the ground and are listed below:

xi (m) 0 2000 4000 6000 8000

hi (m) 50.334 50.595 51.144 55.226 58.648

From independent measurements it is known that the area is flat from 0 m to xstart = 3000m. From xstart on the area is subsiding due to

the gas extraction. This subsidence shows a linear behavior, h = c0 + c1(x − xstart). Apply least-squares curve fitting to the data to

determine the slope c1 in the area x > xstart .

Matlab answer, Exercise 6.7:

close all

clear all

A = [1 0; 1 0; 1 1000; 1 3000; 1 5000]

y = [50.334; 50.595; 51.144; 55.226; 58.648]

xhat = inv((A’*A))*(A’*y);

yhat = A*xhat;

ehat = y-yhat;

c0 = xhat(1,:)

c1 = xhat(2,:)
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Answers, Exercise 6.8

a) Observations: 9; Nr. of parameters: 3, as you
can write a plane as
z = ax + by + c.
Parameters to be estimated: a, b and c.

b) Vector of observations:
vecy = (7.2, 7.2 ,6.7, 7.6, 7.4, 7.5 ,7.7 ,7.9 ,8.3).

c) Vector of paramaters
vecx = (a, b, c).

d) r_A = (x, y, 1).

e) ->

f) vecxhat =
Inverse(Transpose(matA).matA)).Transpose(matA).vecy
is
(0, 0.466667, 6.56667)
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Answers, Exercise 6.9

a) vecyhat = matA.vecxhat gives
vecyhat = (7.03, 7.03, 7.03, 7.5, 7.5, 7.5, 7.97, 7.97, 7.97)

b) The adjusted observations are inside the determined plane

c) ehat = vecy - vecyhat, gives
ehat = (0.17, 0.17, -0.33, 0.1, -0.1, 0, -0.27, -0.07, 0.33).

d) There is a mistake in this exercise, the sqrt should be taken of everything, so

σ =

r

e · e
n

The resulting st.dev is therefore σ = 0.20

e) A normal of the plane is given by (a, b, -1):
Coefficient c is just the offset from the origin. If c=0, it would follow that ax + by − z = 0. So,
(a, b,−1) is perpendicular to each point (x, y, z) fullfilling the plane equation.
So a normal is: (0, 0.466667,−1)

f) Take for example q1, q2, q4, the adjusted versions of p1, p2 and p4.
q1 = (1, 1, 7.033); q2 = (2, 1, 7.033) and q3 = (1, 2, 7.5)

normal.(q2-q1) = 0 and normal.(q4-q1) = 0
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