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Different distributions

Source http://www.math.wm.edu/~leemis/2008amstat.pdf

http://www.math.wm.edu/~leemis/2008amstat.pdf
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Lecture topics

Distribution parameters

Discrete distributions

• Binomial distribution
• Bernoulli distribution

Continous distributions

• Uniform distribution
• Normal distribution
• Mean and Standard deviation
• Exponential distribution

Expectation
• Discrete
• Continuous

Change of variable
• Linear transformation
• From normal to standard normal

Multivariate statistics
• Joint probability
• Random vector
• Covariance
• Correlation
• Rank statistics
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A. Specific Distributions

Source http://ptrow.com/articles/Galton$_$June$_$07.htm

http://ptrow.com/articles/Galton$_$June$_$07.htm
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Recall

Question: what is a distribution function?

Question: what is a probability density function?

Question: what is a probability mass function?

Question: what is the difference between a probability density function and a
probability mass function?

Question: what is the relation between a distribution function and its corre-
sponding probability density or mass function?
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Random exam

Suppose you totally unprepared attend a multiple choice exam
Each of 10 questions only allows the answer YES or NO.
If your answer is correct you obtain a point.

The random variable XE equals your
total number of points:

XE := {Number of correct answers}.

Question: What is P (XE = 0)?
Question: What are generalizations of this problem?
Question: so, what could be parameters describing this problem?
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Probability of k correct answers

Question: What is P (XE = 1)?

P (XE = 1) = 1
2
· ( 1

2
)9 · 10, or,

(probability that an answer is correct)
∗

(probability that the other answers are wrong)
∗

(number of scenarios)

which we generalize to

P (XE = k) = (
1

2
)k · (1

2
)(10−k) · C10,k

with C10,k the number of scenarios,
i.e. the number of ways to pick k correct answers from a list of 10.
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Number of picks

Consider C10,3, the number of ways
to pick 3 questions from a list of 10.

If order matters, you have 10 · 9 · 8
possibilities. Otherwise you have to
compensate for the double counting
of, say, Q1Q3Q2 and Q2Q3Q1.

You can order three questions in
3 · 2 · 1 ways.

⇒ In total there are 10·9·8
3·2···1

choices of three questions.

Number of possibilities to pick a subset of size k from a set with n elements:
 

n

k

!

:=
n(n − 1) . . . (n − (k − 1))

k(k − 1) . . . 2 · 1 =
n!

k!(n − k)!

Source http://mymathnotebook.com/

http://mymathnotebook.com/
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Probability of k good answers

Conclusion: with n = 10

P (XE = k) =

 

n

k

!

· (1

2
)k · (1

2
)(n−k)

Question: what values of k make sense?

Question: what is the probability of outcome six (just passed!)?

Question: how would the formula above change in case the candidate could
choose from four answers A, B, C or D for each question?

Question: how is four instead of two answers affecting the probability of
outcome six?

Question: what is the probability of outcome six in this case?
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Binomial distribution

A discrete random variable X has a
Binomial distribution with parameters
p and n, with

0 ≤ p ≤ 1, and n = 1, 2, . . .

if its probability mass function is
given by

pX(k) = P (X = k) =

 

n

k

!

pk(1−p)n−k

for k = 0, 1, . . . , n.

Notation: X ∼ Bin(n, k)

Question: what is in the figures?
Question: what is the chance on
passing the exam?
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Examples of binomial distributions

Source http://www.boost.org/doc/libs/1$_$41$_$0/libs/math/doc/sf$_$and$_$dist/html/math$_$toolkit/dist/dist$_$ref/dists/b

http://www.boost.org/doc/libs/1$_$41$_$0/libs/math/doc/sf$_$and$_$dist/html/math$_$toolkit/dist/dist$_$ref/dists/binomial$_$dist.html
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Uniform Distribution

A continuous random variable X has a uniform distribution on the interval
[a, b] if its probability density function f is given by

f(x) =

(

0, x not in [a, b]
1

b−a
, for a ≤ x ≤ b

Notation: X ∼ U(a, b)

Question
How do
• the probability density function, and the
• cumulative distribution function

of the distribution U(0, 12) look like?
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Exponential Distribution

See Exercises
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B. Normal Distributions
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Normal distribution

A continuous random variable X has a normal distribution with parameters µ,
its mean, and σ2, its standard deviation, if its probability density function f is
given by

f(x) =
1

σ
√

2π
e−

1
2
( x−µ

σ
)2 , for −∞ ≤ x ≤ ∞

Notation: X ∼ N(µ, σ2)
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Standard normal distribution

The standard normal distribution is the normal distribution with parameters
µ = 0 and σ = 1.

Question. What is Φ(x), the P(robability) D(ensity) F(unction) of N(0,1)?

Remark. Φ(x) = Φ(−x).

Question. What is
R

Φ(x)dx?
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Standard normal + standard deviation

Question: What percentage of points is within 1σ, 2σ and 3σ of the mean?

Source https://www.mathsisfun.com/data/standard-normal-distribution.html

https://www.mathsisfun.com/data/standard-normal-distribution.html
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Arbitrary normal → standard normal

Idea. Compute probabilities for given normal distribution from standard
normal distribution:
• Map given mean on standard mean
• Map given standard deviation on standard normal standard deviation

Source http://www.slideshare.net/kkong/demonstration-of-a-z-transformation-of-a-normal-distribution

http://www.slideshare.net/kkong/demonstration-of-a-z-transformation-of-a-normal-distribution
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Celcius and Fahrenheit

Source http://i.imgur.com/r3xPjAR.jpg

http://i.imgur.com/r3xPjAR.jpg
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Transformation Fahrenheit-Celcius

X − Temperature in degrees Celcius

Y − Temperature in degrees Fahrenheit

Y =
9

5
X + 32

FX , FY Distribution functions of X and Y

FY (a) = P (Y ≤ a) = P (
9

5
X + 32 ≤ a)

= P (X ≤ 5

9
(a − 32)) = FX(

5

9
(a − 32))

Differentiating to densities:

fY (y) =
5

9
fX(

5

9
(y − 32))

Question: What is the type of relation between Celcius and Fahrenheit?
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Transformation to standard normal

A probability P (x1 < X < x2) for a normal distribution X ∼ N(µ, σ) can be
expressed in terms of the standard normal distribution Z = N(0, 1).

Let

Z =
X − µ

σ

Then, with z1,2 =
x1,2−µ

σ
,

P (x1 < X < x2) =
1

σ
√

2π

Z

x2

x1

e
−

1
2
(

x−µ
σ

)2
dx =

1√
2π

Z

z2

z1

e
−

1
2

z2
dz = P (z1 < Z < z2)



22

Dept. of Geoscience & Remote Sensing

Example: probs for arbitrary normal

Source http://www.mathnstuff.com/math/spoken/here/2class/90/standrd.htm

http://www.mathnstuff.com/math/spoken/here/2class/90/standrd.htm
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C. Expectation

Source http://thepetitegeek.blogspot.nl/2010/06/reading-groups.html

http://thepetitegeek.blogspot.nl/2010/06/reading-groups.html
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Expectation

The expectation of a continuous random variable X with prob. density
function f is the number

E{X} =

Z

∞

−∞

xf(x)dx

Question. What is the discrete equivalent?

Question. What is E{X} when f is an even function?

Question. What is an example of an even probability density function?
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Well-known expectations

Question. What is the expectation of the

1. Uniform distribution?

2. Normal distribution?

3. The discrete Bernoulli distribution:

R(p) has a Bernoulli distribution with parameter p, if

R = 1, with probability p

R = 0, with probability 1 − p.

4. (Binomial distribution?)
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Change Of Variable Formula

Let g : IR → IR be a function and let X be a random variable.

If X is continous, with probability density function fX , then

E{g(X)} =

Z

∞

−∞

g(x)fX(x)dx

Question. What is E{g(X)}, if g is linear?

Write g(X) = rX + s and apply integral formula above...

This is the linearity of expectation.
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Binomial Expectation

Recall. The discrete equivalent, i.e. the expectation of E{g(X)}, in case X is a discrete random

variable, taking values a1, a2, . . . , an is given by: E{g(X)} =
Pn

i=1 g(ai)P (X = ai)

What is the expectation of the Binomial distribution?

Any Bin(n, p) distribution can be written as

X = R1 + R2 + . . . Rn

where the Ri are independent ‘Coin‘(p) distributions, that is: Ri = 1 with probability p, and 0 with
probability 1 − p. (Official name: Bernoulli distribution). As

E(Ri) = 0 · (1 − p) + 1 · p = p,

the linearity of expectation gives: E(X) = n · p.

Question: What is the expected mark of the guessing student?
• In case of two answers, A and B?
• In case of four answers, A, B, C or D?
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D. Relating attributes
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Attributes

Attribute example: amount or precense of guide fossils in geological layers

Idea: link layers having similar fossile contents
Source http://www.slideshare.net/cooperk2/guide-to-rock-dating-chap-4

http://www.slideshare.net/cooperk2/guide-to-rock-dating-chap-4
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Correlation Matrix

Goal: quantify information sharing between different attributes.

Idea: very red or blue entries correspond to pairs of attributes that carry very
similar information.
Source https://www.bgc-jena.mpg.de/bgi/index.php/People/MaartenBraakhekke

https://www.bgc-jena.mpg.de/bgi/index.php/People/MaartenBraakhekke


31

Dept. of Geoscience & Remote Sensing

Joint distributions

Source http://en.wikipedia.org/wiki/Joint$_$probability$_$distribution

http://en.wikipedia.org/wiki/Joint$_$probability$_$distribution
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Random vector + Joint distribution

A random vector X : Ω → IRn is a number of random variables:

X = {X1, X2, . . . , Xn}T

GPS Example. The random vector X = {N, E, H} consists of the random
variables N , North, E, East, and, H, height.

The Joint distribution function of the random vector X is:

FX(x1, x2, . . . , xn) = FX(x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

Properties:

1. FX(−∞, . . . ,−∞) = 0,

2. FX is increasing with increasing xi

3. FX(∞, . . . ,∞) = 1.
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Joint cumulative distribution function

Source http://www.slideshare.net/NASAPMC/sandra-smalley

http://www.slideshare.net/NASAPMC/sandra-smalley
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Marginal distribution

Within a joint distribution FX, the marginal distribution of each of the Xi is
given by:

FXi(xi) = FX(∞, . . . ,∞, xi,∞, . . . ,∞)

That is, only the i-th component of the joint distribution function is considered.

Remark

1. The random variable Xi is
completely determined by its
marginal distribution, but,

2. The joint distribution is in general
not yet known if all marginal
distributions are known.

Question: Why not?
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Independence

Consider the random variables

X1 : Ω → IR

X2 : Ω → IR,

...

Xn : Ω → IR

These random variables are mutually independent iff the events

{X1 < x1}, {X2 < x2} . . . , {Xn < xn}
are independent, that is:

P (X1 < x1, X2 < x2, . . . , Xn < xn) = P (X1 < x1)P (X2 < x2) . . . P (Xn < xn)

Question: How are the marginal and joint distribution functions related in this
special case?
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Covariance

Consider the random variables

X1 : Ω :→ IR, and X2 : Ω :→ IR.

Assume the expectations E{X1} = x̄1, E{X2} = x̄2 and E{X1X2} are all
finite.

The Covariance of X1 and X2 is defined as:

cov(X1, X2) = E{(X1 − x̄1)(X2 − x̄2)}

=

Z

∞

−∞

Z

∞

−∞

(x1 − x̄1)(x2 − x̄2)fX1,X2(x1, x2)dx1dx2

= . . . (Expand and recollect)

= E{X1X2} − x̄1x̄2
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Covariance and Independence

Let X1 and X2 be two independent random variables with finite means
E{X1} = x̄1 and E{X2} = x̄2. Then

E{X1X2} = E(X1)E(X2) = x̄1x̄2

X1 and X2 are independent iff

fX1,X2
(x1, x2) = fX1

(x1)fX2
(x2)

Then

E{X1X2} =

Z Z

x1x2fX1,X2
(x1, x2)dx1dx2

=

Z Z

x1fX1
(x1)x2fX2

(x2)dx1dx2

=

Z

x1fX1
dx1

Z

x2fX2
dx2

= E{X1}E{X2}
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Variance and Covariance

Let X be a random variable. The variance of X is the number

var(X) = E{(X − E(X))(X − E(X))}
The covariance between X and an additional random variable Y is given by

cov(X, Y ) = E{(X − E(X))(Y − E(Y ))}

Example. Let the random variable Z = X + Y be the sum of the two random
variables X and Y .

Question: What is the mean of Z?

Claim: var(Z) = var(X) + var(Y ) + 2 · cov(X, Y )

var(Z) = E[(Z − Z̄)
2
] = E[(X − X̄ + Y − Ȳ )

2
]

= E[(X − X̄)
2

+ E(Y − Ȳ )
2

+ 2 · E(X − X̄)(Y − Ȳ )]

= σ
2
X + σ

2
Y + 2 · cov(X, Y )
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Variance-Covariance matrix

Consider the random vector

X = {X1, X2, . . . , Xn}T ,

with expectation

E(X) = X̄ = {X̄1, X̄2, . . . , X̄n}T

The variance-covariance matrix of X, denoted Qxx, is given by

Qxx = E((X − X̄)(X − X̄)T )

=

0

B

B

B

B

@

σ2
X1

cov(X1, X2) . . . cov(X1, Xn)

cov(X1, X2) σ2
X2

. . . cov(X2, Xn)
...

...
. . .

...
cov(X1, Xn) cov(X2, Xn) . . . σ2

Xn

1

C

C

C

C

A

Question: Why is Qxx symmetric?
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Experimental Covariance

Let Zi and Zj denote two random functions with standard deviations σi and
σj resp.

Theoretical and Experimental covariance.

cov(Zi, Zj) = E{(Zi − E{Zi})} · E{(Zj − E{Zj})}
= E{(Zi − µi)(Zj − µj)} = σij

l

σij =
1

n

n
X

k=1

(zk,1 − µ1)(zk,2 − µ2)
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Correlation

Disadvantage of covariance: arbitrary number

Let X1 and X2 be two random variables with finite variances σ2
X1

and σ2
X2

.
The correlation coefficient ρ of X1 and X2 is given by:

ρ(X1, X2) =
cov(X1, X2)

σX1σX2

Corrollary. cov(X1, X2) = 0 iff ρ(X1, X2) = 0.

Short formula. (Pearson’s) coefficient.

ρij =
σij

σi · σj

∈ [−1, 1]
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Are the GPS offsets correlated?

 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
−10

−5

0

5

10

time [hour]

[m
]

position coordinates

 

 

North
East
Height

Question. What could be reason for
correlation between the offsets (in N,
E and H)?

Matrix of covariances:

C(i, j) =

0

B

B

@

3.05 0.36 −0.36

0.36 3.07 −0.49

−0.36 −0.49 9.67

1

C

C

A

Questions

1. What does the −0.49 represent?

2. And what the 3.07?

3. Why is C symmetric?

4. Why is C(3, 3) the largest entry?

5. What is the total variance of the
data set?
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Correlations between GPS offsets

 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
−10
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position coordinates
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Height

Exercise.
Determine the correlation matrix,
starting from the covariance matrix.

Matrix of correlations:

P (i, j) =

0

B

B

@

1 0.12 −0.07

0.12 1 −0.09

−0.07 0.09 1

1

C

C

A

Questions

1. Why are all diagonal elements
equal to 1?

2. Which two attributes are most
correlated?

3. And which two least?

4. Why are some correlations
positive and some negative?

5. What is wrong with this matrix?
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Types of Correlation

Source http://en.wikipedia.org/wiki/Pearson$_$product-moment$_$correlation$_$coefficient

Question. What kind of relation do the covariance and correlation coefficient
reveal?

http://en.wikipedia.org/wiki/Pearson$_$product-moment$_$correlation$_$coefficient
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Example: correlation between attributes.

Are attributes 5 and 9 related?

575 580 585 590 595 600 605

705

710

715

720

725

0.04 0.06 0.08 0.1

575 580 585 590 595 600 605

705

710

715

720

725

0.06 0.08 0.1 0.12 0.14

0.04 0.08 0.12

20

40

60

80

100

120

Attribute 5 Attribute 9µ5 = 0.049

σ2
5 = 0.0084

µ9 = 0.090

σ2
9 = 0.015

Covariance: σ59 =
Pn

i=1(z5,i−µ5)(z9,i−µ9)

n
= 0.0001037.

Correlation coefficient: ρ5,9 = σ59
σ5·σ9

= 0.83.
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Example, scaling of point clouds.

Normalize all points: z̃i = zi−µ

σ

Original point cloud Normalized histogram

Normalized point cloud

0.04 0.05 0.06 0.07

0.06

0.08

0.1

0.12

0.14

-2 0 2 4

20
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-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

µ5 = 0.049

σ2
5 = 0.0084

µ9 = 0.090

σ2
9 = 0.015

µ̃5 = 0

σ̃2
5 = 1

µ̃9 = 0

σ̃2
9 = 1

Normalized covariance: σ̃5,9 = 0.83 =
σ̃5,9

σ̃5·σ̃9
= ρ̃5,9 = ρ5,9.

Remark. Minimal sum of least squares for linear fit equals σ2
9(1 − (ρ5,9)

2).
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Alternative: Spearman correlation

Alternative for (Pearson) correlation:

Compare order statistics, not the real
values.

1. Input : Two vectors
X = {x1, . . . , xn} and
Y = {y1, . . . , yn}.

2. Replace each entry xi by its
(increasing) rank. This gives a
vector RX

3. Make the vector RY in the same
way.

4. Output : (ordinary) correlation
between vectors RX and RY . Source: Wikipedia

Remark. In case of ex aequo ranks, take the average.
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Example: Spearman correlation

A group of AES students scored the following marks:

Soil Mechanics 5.6 7.5 5.5 7.1 6.1 6.4 5.8 10 9.1 6.1

Extraction of Resources 6.6 7.0 1 6.0 6.5 1.2 5.8 7.1 6.7 6.3

Which results in these ranks:

Soil Mechanics 9 3 10 4 6.5 5 8 1 2 6.5

Extraction of Resources 4 2 10 7 5 9 8 1 3 6

The Spearman correlation between the vectors of marks equals the ordinary
correlation between the two rank vectors, which is 0.67

Exercise.
What is the correlation between the marks for Soil Mechanics and Extraction
of Resources?



49

Dept. of Geoscience & Remote Sensing

Covariance/correlation properties

Covariance
• Depends on the measurement scale.
• Positive covariance ⇔ Residuals have the same sign ⇔ Data values are

on the same side of the mean
• High absolute covariance ⇔ Both residuals are far way from mean.

Correlation
• Scale free.
• Uncorrelated variables ⇔ Residuals are arbitrary ⇔ ρij = σij = 0.
• −1 ≤ ρij ≤ 1, while equality holds if and only if a linear relation exists

between Zi and Zj with probability one.
• Only measures linear relations.
• Sensitive to outliers.

Alternatives???
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Conclusions

Distributions with a name are
• characterized by a small number of parameters
• often linked to very particular experiments

Distributions are often related:
• Arbitrary normal to standard normal
• Binomial as multiple Bernoulli

Notably linear relationships are easy to work with

From univariate to multivariate:
• Consider several attributes simultaneosuly
• E.g. by their covariance or correlation



51

Dept. of Geoscience & Remote Sensing

Exercises

Exercise 5.1 The random variable X has an Exponential distribution if its probability density
function equals

fX(x) =

(

λE−λx x ≥ 0

0 otherwise

a). Sketch the PDF and the CDF for λ = 2.

b). Determine mean and variance for general λ

Exercise 5.2 Assume the random variable X has a normal distribution. Let x̄ denote its
expectation. Use tabulated values of 1 − Φ(X) or Matlab to show that

a). P (|X − x̄| ≤ σX) = 0.683

b). P (|X − x̄| ≤ 2σX) = 0.954

c). P (|X − x̄| ≤ 1.96σX) = 0.95

d). P (|X − x̄| ≤ 2.58σX) = 0.99
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Exercises

Exercise 5.3 Assume that the duration of horse pregnancies varies according to a normal

distribution with mean 336 days and standard deviation 3 days. Find the percentage of horse

pregnancies that are longer than 339 days.

Exercise 5.4 Let X1, X2, . . . , Xn be n independent random variables, all with variance σ2.

Show that the variance of 1
n

(X1 + X2 + · · · + Xn) is equal to σ2/n.

Exercise 5.5 Determine the matrix of GPS correlations from the matrix of GPS covariances.

(Slides 42 and 43).

Exercise 5.6 The random variable X has a uniform distribution of the interval (-1,3), i.e.

X ∼ U(−1, 3). What is the mean of the random variable Y = X3 + 4 ?
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Answers, Exercise 5.1

The random variable X has an Exponential distribution if its probability
density function equals

fX(x) =

(

λE−λx x ≥ 0

0 otherwise

1. Sketch the PDF and the CDF for λ = 2.

2. Determine mean and variance for general λ

Mean: x̄ = λ
R

∞

0
xe−λxdx = 1

λ

Variance: σ2 = λ
R

∞

0
(x − 1

λ
)2e−λxdx = 1

λ2

Solve both integrals using Integrating by parts:
Z

b

a

uv
′

= [uv]
b
a −

Z

b

a

vu
′

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

Exponential Distr. Λ=2; Blue: PDF; Red: CDF
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Answers, Exercise 5.2

Let x̄ denote the expectation. Use tabulated values of 1 − Φ(z) or Matlab to
show that

1. P (|X − x̄| ≤ σX) = 0.683

2. P (|X − x̄| ≤ 2σX) = 0.954

3. P (|X − x̄| ≤ 1.96σX) = 0.95

4. P (|X − x̄| ≤ 2.58σX) = 0.99

1. P ( X−x̄
σX

< 1) = P (|z| ≤ 1) = 1 − 2P (z < −1) = 1 − 2 · Φ(−1) = 1 − 2 · 0.1587 = .6826

(Evaluate the CDF of N(0, 1) at z = -1)

2. P (|z| ≤ 2) = 1 − 2 · Φ(−2) = 1 − 2 · 0.0228 = 0.9544

(Evaluate the CDF of N(0, 1) at z = -2)

3. P (|z| ≤ 1.96) = 1 − 2 · Φ(−1.96) = 1 − 2 · 0.025 = 0.95

(Evaluate the CDF of N(0, 1) at z = -1.96)

4. P (|z| ≤ 2.58) = 1 − 2 · 0.0048 = 0.9902

(Evaluate the CDF of N(0, 1) at z = -2.58)
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Assume that the duration of horse pregnancies varies according to a normal
distribution with mean 336 days and standard deviation 3 days. Find the
percentage of horse pregnancies that are longer than 339 days.

X ≈ N(336, 3). Therefore,

P (X ≥ 339) = P (
X − X̄

σx

≥ 339 − 336

3
)

= P (Z ≥ 1)

Matlab: P (Z ≥ 1) = .1587 ≈ 16%, with Z ≈ N(0, 1).

(Compare previous exercise)
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Answers, Exercise 5.4

Let X1, X2, . . . , Xn be n independent random variables, all with variance σ2.
Show that the variance of 1

n
(X1 + X2 + · · · + Xn) is equal to σ2/n.

In the lecture it has been shown that

var(X1 + X2) = var(X1) + var(X2) + 2cov(X1, X2)

X1 is independent from X2, so the covariances vanish. Therefore

var(X1 + X2 + · · · + Xn) = nvar(Xi) = nσ
2

Moreover, var( 1
n

Z) = 1
n

2var(Z). So, the result follows with Z = X1 + . . . Xn.
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Answers, Exercise 5.5

Determine the matrix of GPS correlations from the matrix of GPS covariances. (Slides 42 and 43).

To obtain entry P (i, j) for i = 1, 2, 3, and j = 1, 2, 3 in the matrix on Slide 43, apply the following
formula:

P (i, j) =
C(i, j)

p

C(i, i)
p

C(j, j)

For example,

1 = P (1, 1) =
3.05√

3.05
√

3.05

and

−0.09 = P (2, 3) =
−0.49√

3.07
√

9.67
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Answers, Exercise 5.6

The random variable X has a uniform distribution of the interval (-1,3), i.e.
X ≈ U(−1, 3). What is the mean of the random variable Y = X3 + 4 ?

Probability density function: fX(x) = 1
4 (compare before)

Determine first the expectation of X:

E{X} =

Z

xfXdx =

Z 3

−1

x
1

4
dx = 1

Let Y ≈ X3 + 4. Then

E{Y } =

Z

yfY dy =

Z

(x
3

+ 4)fX(x)dx =

Z 3

−1

(x
3

+ 4)
1

4
dx =

1

4
[
x

4

4
+ 4x]

3
−1 = 9
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