AESB2440: Geostatistics \& Remote Sensing
 Lecture 5: Distributions

Different distributions

Source http://www.math.wm.edu/~leemis/2008amstat.pdf

Lecture topics

Distribution parameters

Discrete distributions

- Binomial distribution
- Bernoulli distribution

Continous distributions

- Uniform distribution
- Normal distribution
- Mean and Standard deviation
- Exponential distribution

Expectation

- Discrete
- Continuous

Change of variable

- Linear transformation
- From normal to standard normal

Multivariate statistics

- Joint probability
- Random vector
- Covariance
- Correlation
- Rank statistics

A. Specific Distributions

notation:	$\mathcal{N}\left(\mu, \sigma^{2}\right)$
parameters:	$\mu \in \mathbf{R}$ - mean (location) $\sigma^{2} \geq 0$ - variance (squared scale)
support:	$\begin{aligned} & x \in \mathbf{R} \text { if } \sigma^{2}>0 \\ & x=\mu \text { if } \sigma^{2}=0 \end{aligned}$
pdf:	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
cdf:	$\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sqrt{2 \sigma^{2}}}\right)\right]$
mean:	μ
median:	μ
mode:	μ
variance:	σ^{2}
skewness:	0
ex.kurtosis:	0
entropy:	$\frac{1}{2} \ln \left(2 \pi e \sigma^{2}\right)$
mgt:	$e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}$
cf:	$e^{i \mu t-\frac{1}{2} \sigma^{2} t^{2}}$
Fisher information:	$\left(\begin{array}{cc} 1 / \sigma^{2} & 0 \\ 0 & 1 /\left(2 \sigma^{4}\right) \end{array}\right)$

Recall

Question: what is a distribution function?
Question: what is a probability density function?
Question: what is a probability mass function?
Question: what is the difference between a probability density function and a probability mass function?

Question: what is the relation between a distribution function and its corresponding probability density or mass function?

Random exam

Suppose you totally unprepared attend a multiple choice exam Each of 10 questions only allows the answer YES or NO. If your answer is correct you obtain a point.

The random variable X_{E} equals your total number of points:
$X_{E}:=\{$ Number of correct answers $\}$.

Question: What is $P\left(X_{E}=0\right)$?
Question: What are generalizations of this problem?
Question: so, what could be parameters describing this problem?

Probability of k correct answers

Question: What is $P\left(X_{E}=1\right)$?
$P\left(X_{E}=1\right)=\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{9} \cdot 10$, or, (probability that an answer is correct)
(probability that the other answers are wrong)

> (number of scenarios)
which we generalize to

$$
P\left(X_{E}=k\right)=\left(\frac{1}{2}\right)^{k} \cdot\left(\frac{1}{2}\right)^{(10-k)} \cdot C_{10, k}
$$

with $C_{10, k}$ the number of scenarios,
i.e. the number of ways to pick k correct answers from a list of 10 .

Number of picks

Consider $C_{10,3}$, the number of ways to pick 3 questions from a list of 10 .

If order matters, you have $10 \cdot 9 \cdot 8$ possibilities. Otherwise you have to compensate for the double counting of, say, $Q_{1} Q_{3} Q_{2}$ and $Q_{2} Q_{3} Q_{1}$.

You can order three questions in $3 \cdot 2 \cdot 1$ ways.
\Rightarrow In total there are $\frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdots 1}$ choices of three questions.

Number of possibilities to pick a subset of size k from a set with n elements:

$$
\binom{n}{k}:=\frac{n(n-1) \ldots(n-(k-1))}{k(k-1) \ldots 2 \cdot 1}=\frac{n!}{k!(n-k)!}
$$

Probability of k good answers

Conclusion: with $n=10$

$$
P\left(X_{E}=k\right)=\binom{n}{k} \cdot\left(\frac{1}{2}\right)^{k} \cdot\left(\frac{1}{2}\right)^{(n-k)}
$$

Question: what values of k make sense?
Question: what is the probability of outcome six (just passed!)?
Question: how would the formula above change in case the candidate could choose from four answers A, B, C or D for each question?

Question: how is four instead of two answers affecting the probability of outcome six?

Question: what is the probability of outcome six in this case?

Binomial distribution

A discrete random variable X has a Binomial distribution with parameters p and n, with

$$
0 \leq p \leq 1, \text { and } n=1,2, \ldots
$$

if its probability mass function is given by
$p_{X}(k)=P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
for $k=0,1, \ldots, n$.
Notation: $X \sim \operatorname{Bin}(n, k)$

Question: what is in the figures? Question: what is the chance on

 passing the exam?

Examples of binomial distributions

Uniform Distribution

A continuous random variable X has a uniform distribution on the interval $[a, b]$ if its probability density function f is given by

$$
f(x)= \begin{cases}0, & x \text { not in }[a, b] \\ \frac{1}{b-a}, & \text { for } a \leq x \leq b\end{cases}
$$

Notation: $X \sim U(a, b)$

Question
How do

- the probability density function, and the
- cumulative distribution function
of the distribution $U(0,12)$ look like?

Exponential Distribution

See Exercises

B. Normal Distributions

THEORIA
MOTVS CORPORVM
COELESTIVM
in
SECTIONIBVS CONICIS SOLEM AMBIENTIVM
AVCTORE
CAROLO FRIDERICO GAVSS

Normal distribution

A continuous random variable X has a normal distribution with parameters μ, its mean, and σ^{2}, its standard deviation, if its probability density function f is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad \text { for } \quad-\infty \leq x \leq \infty
$$

Notation: $X \sim N\left(\mu, \sigma^{2}\right)$

Standard normal distribution

The standard normal distribution is the normal distribution with parameters $\mu=0$ and $\sigma=1$.

Question. What is $\Phi(x)$, the P (robability) D (ensity) F (unction) of $\mathrm{N}(0,1)$?

Remark. $\Phi(x)=\Phi(-x)$.
Question. What is $\int \Phi(x) d x$?

Standard normal + standard deviation

Question: What percentage of points is within $1 \sigma, 2 \sigma$ and 3σ of the mean?

Source https://www.mathsisfun.com/data/standard-normal-distribution.html

Arbitrary normal \rightarrow standard normal

This transformation allows us to use the standard normal distribution and the tables of probabilities for the standard normal table to find out the appropriate probability. The Z transformation tells us the 8 on the original distribution is equivalent to -1 on the standard normal distribution. So, the area under the standard normal distribution to the left of -1 represents the same probability as the area under the original distribution to the left of 8 .

Idea. Compute probabilities for given normal distribution from standard normal distribution:

- Map given mean on standard mean
- Map given standard deviation on standard normal standard deviation

Celcius and Fahrenheit

Transformation Fahrenheit-Celcius

$$
X \quad-\quad \text { Temperature in degrees Celcius }
$$

$$
Y-\text { Temperature in degrees Fahrenheit }
$$

$$
Y=\frac{9}{5} X+32
$$

$F_{X}, F_{Y} \quad$ Distribution functions of X and Y

$$
\begin{aligned}
F_{Y}(a) & =P(Y \leq a)=P\left(\frac{9}{5} X+32 \leq a\right) \\
& =P\left(X \leq \frac{5}{9}(a-32)\right)=F_{X}\left(\frac{5}{9}(a-32)\right)
\end{aligned}
$$

Differentiating to densities:

$$
f_{Y}(y)=\frac{5}{9} f_{X}\left(\frac{5}{9}(y-32)\right)
$$

Question: What is the type of relation between Celcius and Fahrenheit?

Transformation to standard normal

A probability $P\left(x_{1}<X<x_{2}\right)$ for a normal distribution $X \sim N(\mu, \sigma)$ can be expressed in terms of the standard normal distribution $Z=N(0,1)$.

Let

$$
Z=\frac{X-\mu}{\sigma}
$$

Then, with $z_{1,2}=\frac{x_{1,2}-\mu}{\sigma}$,
$P\left(x_{1}<X<x_{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{x_{1}}^{x_{2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=\frac{1}{\sqrt{2 \pi}} \int_{z_{1}}^{z_{2}} e^{-\frac{1}{2} z^{2}} d z=P\left(z_{1}<Z<z_{2}\right)$

Example: probs for arbitrary normal

C. Expectation

Source http://thepetitegeek.blogspot.nl/2010/06/reading-groups.html

Expectation

The expectation of a continuous random variable X with prob. density function f is the number

$$
E\{X\}=\int_{-\infty}^{\infty} x f(x) d x
$$

Question. What is the discrete equivalent?

Question. What is $E\{X\}$ when f is an even function?
Question. What is an example of an even probability density function?

Well-known expectations

Question. What is the expectation of the

1. Uniform distribution?
2. Normal distribution?
3. The discrete Bernoulli distribution:
$R(p)$ has a Bernoulli distribution with parameter p, if

$$
\begin{array}{lll}
R=1, & & \text { with probability } p \\
R=0, & & \text { with probability } 1-p .
\end{array}
$$

4. (Binomial distribution?)

Change Of Variable Formula

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let X be a random variable.
If X is continous, with probability density function f_{X}, then

$$
E\{g(X)\}=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Question. What is $E\{g(X)\}$, if g is linear?
Write $g(X)=r X+s$ and apply integral formula above...

This is the linearity of expectation.

Binomial Expectation

Recall. The discrete equivalent, i.e. the expectation of $E\{g(X)\}$, in case X is a discrete random variable, taking values $a_{1}, a_{2}, \ldots, a_{n}$ is given by: $E\{g(X)\}=\sum_{i=1}^{n} g\left(a_{i}\right) P\left(X=a_{i}\right)$

What is the expectation of the Binomial distribution?
Any $\operatorname{Bin}(n, p)$ distribution can be written as

$$
X=R_{1}+R_{2}+\ldots R_{n}
$$

where the R_{i} are independent ' $\operatorname{Coin}^{\prime}(\mathrm{p})$ distributions, that is: $R_{i}=1$ with probability p, and 0 with probability $1-p$. (Official name: Bernoulli distribution). As

$$
E\left(R_{i}\right)=0 \cdot(1-p)+1 \cdot p=p
$$

the linearity of expectation gives: $E(X)=n \cdot p$.

Question: What is the expected mark of the guessing student?

- In case of two answers, A and B ?
- In case of four answers, A, B, C or D ?

D. Relating attributes

Attributes

Attribute example: amount or precense of guide fossils in geological layers

Idea: link layers having similar fossile contents

Correlation Matrix

Goal: quantify information sharing between different attributes.

Idea: very red or blue entries correspond to pairs of attributes that carry very similar information.

Joint distributions

Source http://en.wikipedia.org/wiki/Joint\$_\$probability\$_\$distribution

Random vector + Joint distribution

A random vector $\mathbf{X}: \Omega \rightarrow \mathbb{R}^{n}$ is a number of random variables:

$$
\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}^{T}
$$

GPS Example. The random vector $\mathbf{X}=\{N, E, H\}$ consists of the random variables N, North, E, East, and, H, height.

The Joint distribution function of the random vector \mathbf{X} is:

$$
F_{\mathbf{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F_{\mathbf{X}}(\mathbf{x})=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)
$$

Properties:

1. $F_{\mathbf{X}}(-\infty, \ldots,-\infty)=0$,
2. $F_{\mathbf{X}}$ is increasing with increasing x_{i}
3. $F_{\mathbf{X}}(\infty, \ldots, \infty)=1$.

Joint cumulative distribution function

Page 21

Marginal distribution

Within a joint distribution $F_{\mathbf{X}}$, the marginal distribution of each of the X_{i} is given by:

$$
F_{X_{i}}\left(x_{i}\right)=F_{\mathbf{X}}\left(\infty, \ldots, \infty, x_{i}, \infty, \ldots, \infty\right)
$$

That is, only the i-th component of the joint distribution function is considered.

Remark

1. The random variable X_{i} is completely determined by its marginal distribution, but,
2. The joint distribution is in general not yet known if all marginal distributions are known.

Question: Why not?

Independence

Consider the random variables

$$
\begin{array}{rll}
X_{1}: \Omega & \rightarrow \mathbb{R} \\
X_{2}: \Omega & \rightarrow \mathbb{R}, \\
& \vdots & \\
X_{n}: \Omega & \rightarrow \mathbb{R}
\end{array}
$$

These random variables are mutually independent iff the events

$$
\left\{X_{1}<x_{1}\right\},\left\{X_{2}<x_{2}\right\} \ldots,\left\{X_{n}<x_{n}\right\}
$$

are independent, that is:
$P\left(X_{1}<x_{1}, X_{2}<x_{2}, \ldots, X_{n}<x_{n}\right)=P\left(X_{1}<x_{1}\right) P\left(X_{2}<x_{2}\right) \ldots P\left(X_{n}<x_{n}\right)$

Question: How are the marginal and joint distribution functions related in this special case?

Covariance

Consider the random variables

$$
X_{1}: \Omega: \rightarrow \mathbb{R}, \quad \text { and } \quad X_{2}: \Omega: \rightarrow \mathbb{R} .
$$

Assume the expectations $E\left\{X_{1}\right\}=\bar{x}_{1}, E\left\{X_{2}\right\}=\bar{x}_{2}$ and $E\left\{X_{1} X_{2}\right\}$ are all finite.

The Covariance of X_{1} and X_{2} is defined as:

$$
\begin{aligned}
\operatorname{cov}\left(X_{1}, X_{2}\right) & =E\left\{\left(X_{1}-\bar{x}_{1}\right)\left(X_{2}-\bar{x}_{2}\right)\right\} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{1}-\bar{x}_{1}\right)\left(x_{2}-\bar{x}_{2}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\cdots(\text { Expand and recollect }) \\
& =E\left\{X_{1} X_{2}\right\}-\bar{x}_{1} \bar{x}_{2}
\end{aligned}
$$

Covariance and Independence

Let X_{1} and X_{2} be two independent random variables with finite means $E\left\{X_{1}\right\}=\bar{x}_{1}$ and $E\left\{X_{2}\right\}=\bar{x}_{2}$. Then

$$
E\left\{X_{1} X_{2}\right\}=E\left(X_{1}\right) E\left(X_{2}\right)=\bar{x}_{1} \bar{x}_{2}
$$

X_{1} and X_{2} are independent iff

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
$$

Then

$$
\begin{aligned}
E\left\{X_{1} X_{2}\right\} & =\iint x_{1} x_{2} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\iint x_{1} f_{X_{1}}\left(x_{1}\right) x_{2} f_{X_{2}}\left(x_{2}\right) d x_{1} d x_{2} \\
& =\int x_{1} f_{X_{1}} d x_{1} \int x_{2} f_{X_{2}} d x_{2} \\
& =E\left\{X_{1}\right\} E\left\{X_{2}\right\}
\end{aligned}
$$

Variance and Covariance

Let X be a random variable. The variance of X is the number

$$
\operatorname{var}(X)=E\{(X-E(X))(X-E(X))\}
$$

The covariance between X and an additional random variable Y is given by

$$
\operatorname{cov}(X, Y)=E\{(X-E(X))(Y-E(Y))\}
$$

Example. Let the random variable $Z=X+Y$ be the sum of the two random variables X and Y.

Question: What is the mean of Z ?
Claim: $\operatorname{var}(Z)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \cdot \operatorname{cov}(X, Y)$

$$
\begin{aligned}
\operatorname{var}(Z) & =E\left[(Z-\bar{Z})^{2}\right]=E\left[(X-\bar{X}+Y-\bar{Y})^{2}\right] \\
& =E\left[(X-\bar{X})^{2}+E(Y-\bar{Y})^{2}+2 \cdot E(X-\bar{X})(Y-\bar{Y})\right] \\
& =\sigma_{X}^{2}+\sigma_{Y}^{2}+2 \cdot \operatorname{cov}(X, Y)
\end{aligned}
$$

Variance-Covariance matrix

Consider the random vector

$$
\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}^{T},
$$

with expectation

$$
E(\mathbf{X})=\overline{\mathbf{X}}=\left\{\bar{X}_{1}, \bar{X}_{2}, \ldots, \bar{X}_{n}\right\}^{T}
$$

The variance-covariance matrix of \mathbf{X}, denoted $Q_{x x}$, is given by

$$
\begin{aligned}
Q_{x x} & =E\left((\mathbf{X}-\overline{\mathbf{X}})(\mathbf{X}-\overline{\mathbf{X}})^{T}\right) \\
& =\left(\begin{array}{cccc}
\sigma_{X_{1}}^{2} & \operatorname{cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{cov}\left(X_{1}, X_{n}\right) \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & \sigma_{X_{2}}^{2} & \ldots & \operatorname{cov}\left(X_{2}, X_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left(X_{1}, X_{n}\right) & \operatorname{cov}\left(X_{2}, X_{n}\right) & \ldots & \sigma_{X_{n}}^{2}
\end{array}\right)
\end{aligned}
$$

Question: Why is $Q_{x x}$ symmetric?

Experimental Covariance

Let Z_{i} and Z_{j} denote two random functions with standard deviations σ_{i} and σ_{j} resp.

Theoretical and Experimental covariance.

$$
\begin{aligned}
\operatorname{cov}\left(Z_{i}, Z_{j}\right) & =E\left\{\left(Z_{i}-E\left\{Z_{i}\right\}\right)\right\} \cdot E\left\{\left(Z_{j}-E\left\{Z_{j}\right\}\right)\right\} \\
& =E\left\{\left(Z_{i}-\mu_{i}\right)\left(Z_{j}-\mu_{j}\right)\right\}=\sigma_{i j} \\
& \downarrow \\
\sigma_{i j} & =\frac{1}{n} \sum_{k=1}^{n}\left(z_{k, 1}-\mu_{1}\right)\left(z_{k, 2}-\mu_{2}\right)
\end{aligned}
$$

Correlation

Disadvantage of covariance: arbitrary number

Let X_{1} and X_{2} be two random variables with finite variances $\sigma_{X_{1}}^{2}$ and $\sigma_{X_{2}}^{2}$. The correlation coefficient ρ of X_{1} and X_{2} is given by:

$$
\rho\left(X_{1}, X_{2}\right)=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sigma_{X_{1}} \sigma_{X_{2}}}
$$

Corrollary. $\operatorname{cov}\left(X_{1}, X_{2}\right)=0$ iff $\rho\left(X_{1}, X_{2}\right)=0$.
Short formula. (Pearson's) coefficient.

$$
\rho_{i j}=\frac{\sigma_{i j}}{\sigma_{i} \cdot \sigma_{j}} \in[-1,1]
$$

Are the GPS offsets correlated?

Question. What could be reason for correlation between the offsets (in N , E and H$)$?

Matrix of covariances:

$$
C(i, j)=\left(\begin{array}{ccc}
3.05 & 0.36 & -0.36 \\
0.36 & 3.07 & -0.49 \\
-0.36 & -0.49 & 9.67
\end{array}\right)
$$

Questions

1. What does the -0.49 represent?
2. And what the 3.07 ?
3. Why is C symmetric?
4. Why is $C(3,3)$ the largest entry?
5. What is the total variance of the data set?

Correlations between GPS offsets

Exercise.
Determine the correlation matrix, starting from the covariance matrix.

Matrix of correlations:

$$
P(i, j)=\left(\begin{array}{ccc}
1 & 0.12 & -0.07 \\
0.12 & 1 & -0.09 \\
-0.07 & 0.09 & 1
\end{array}\right)
$$

Questions

1. Why are all diagonal elements equal to 1 ?
2. Which two attributes are most correlated?
3. And which two least?
4. Why are some correlations positive and some negative?
5. What is wrong with this matrix?

Types of Correlation

Question. What kind of relation do the covariance and correlation coefficient reveal?

Example: correlation between attributes.

Are attributes 5 and 9 related?

Attribute 5

$0.04 \quad 0.06 \quad 0.08 \quad 0.1$

Attribute 9

$0.06 \quad 0.08 \quad 0.1 \quad 0.12 \quad 0.14$

Covariance: $\sigma_{59}=\frac{\sum_{i=1}^{n}\left(z_{5, i}-\mu_{5}\right)\left(z_{9, i}-\mu_{9}\right)}{n}=0.0001037$.
Correlation coefficient: $\rho_{5,9}=\frac{\sigma_{59}}{\sigma_{5} \cdot \sigma_{9}}=0.83$.

Example, scaling of point clouds.

Normalize all points: $\tilde{z}_{i}=\frac{z_{i}-\mu}{\sigma}$

Normalized point cloud

Normalized covariance: $\tilde{\sigma}_{5,9}=0.83=\frac{\tilde{\sigma}_{5,9}}{\tilde{\sigma}_{5} \cdot \tilde{\tau}_{9}}=\tilde{\rho}_{5,9}=\rho_{5,9}$.
Remark. Minimal sum of least squares for linear fit equals $\sigma_{9}^{2}\left(1-\left(\rho_{5,9}\right)^{2}\right)$.

Alternative: Spearman correlation

Alternative for (Pearson) correlation:
Compare order statistics, not the real values.

1. Input: Two vectors
$X=\left\{x_{1}, \ldots, x_{n}\right\}$ and
$Y=\left\{y_{1}, \ldots, y_{n}\right\}$.
2. Replace each entry x_{i} by its (increasing) rank. This gives a vector R_{X}
3. Make the vector R_{Y} in the same way.

4. Output: (ordinary) correlation between vectors R_{X} and R_{Y}.

Remark. In case of ex aequo ranks, take the average.

Example: Spearman correlation

A group of AES students scored the following marks:

Soil Mechanics	5.6	7.5	5.5	7.1	6.1	6.4	5.8	10	9.1	6.1
Extraction of Resources	6.6	7.0	1	6.0	6.5	1.2	5.8	7.1	6.7	6.3

Which results in these ranks:

Soil Mechanics	9	3	10	4	6.5	5	8	1	2	6.5
Extraction of Resources	4	2	10	7	5	9	8	1	3	6

The Spearman correlation between the vectors of marks equals the ordinary correlation between the two rank vectors, which is 0.67

Exercise.

What is the correlation between the marks for Soil Mechanics and Extraction of Resources?

Covariance/correlation properties

Covariance

- Depends on the measurement scale.
- Positive covariance \Leftrightarrow Residuals have the same sign \Leftrightarrow Data values are on the same side of the mean
- High absolute covariance \Leftrightarrow Both residuals are far way from mean.

Correlation

- Scale free.
- Uncorrelated variables \Leftrightarrow Residuals are arbitrary $\Leftrightarrow \rho_{i j}=\sigma_{i j}=0$.
- $-1 \leq \rho_{i j} \leq 1$, while equality holds if and only if a linear relation exists between Z_{i} and Z_{j} with probability one.
- Only measures linear relations.
- Sensitive to outliers.

Alternatives???

Conclusions

Distributions with a name are

- characterized by a small number of parameters
- often linked to very particular experiments

Distributions are often related:

- Arbitrary normal to standard normal
- Binomial as multiple Bernoulli

Notably linear relationships are easy to work with

From univariate to multivariate:

- Consider several attributes simultaneosuly
- E.g. by their covariance or correlation

Exercises

Exercise 5.1 The random variable X has an Exponential distribution if its probability density function equals

$$
f_{X}(x)= \begin{cases}\lambda E^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

a). Sketch the PDF and the CDF for $\lambda=2$.
b). Determine mean and variance for general λ

Exercise 5.2 Assume the random variable X has a normal distribution. Let \bar{x} denote its expectation. Use tabulated values of $1-\Phi(X)$ or Matlab to show that
a). $P\left(|X-\bar{x}| \leq \sigma_{X}\right)=0.683$
b). $P\left(|X-\bar{x}| \leq 2 \sigma_{X}\right)=0.954$
c). $P\left(|X-\bar{x}| \leq 1.96 \sigma_{X}\right)=0.95$
d). $P\left(|X-\bar{x}| \leq 2.58 \sigma_{X}\right)=0.99$

Exercises

Exercise 5.3 Assume that the duration of horse pregnancies varies according to a normal distribution with mean 336 days and standard deviation 3 days. Find the percentage of horse pregnancies that are longer than 339 days.

Exercise 5.4 Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent random variables, all with variance σ^{2}. Show that the variance of $\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ is equal to σ^{2} / n.

Exercise 5.5 Determine the matrix of GPS correlations from the matrix of GPS covariances. (Slides 42 and 43).

Exercise 5.6 The random variable X has a uniform distribution of the interval ($-1,3$), i.e. $X \sim U(-1,3)$. What is the mean of the random variable $Y=X^{3}+4$?

Answers, Exercise 5.1

The random variable X has an Exponential distribution if its probability density function equals

$$
f_{X}(x)= \begin{cases}\lambda E^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

1. Sketch the PDF and the CDF for $\lambda=2$.
2. Determine mean and variance for general λ

Mean: $\bar{x}=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x=\frac{1}{\lambda}$
Variance: $\sigma^{2}=\lambda \int_{0}^{\infty}\left(x-\frac{1}{\lambda}\right)^{2} e^{-\lambda x} d x=\frac{1}{\lambda^{2}}$
Solve both integrals using Integrating by parts:

$$
\int_{a}^{b} u v^{\prime}=[u v]_{a}^{b}-\int_{a}^{b} v u^{\prime}
$$

Answers, Exercise 5.2

Let \bar{x} denote the expectation. Use tabulated values of $1-\Phi(z)$ or Matlab to show that

1. $P\left(|X-\bar{x}| \leq \sigma_{X}\right)=0.683$
2. $P\left(|X-\bar{x}| \leq 2 \sigma_{X}\right)=0.954$
3. $P\left(|X-\bar{x}| \leq 1.96 \sigma_{X}\right)=0.95$
4. $P\left(|X-\bar{x}| \leq 2.58 \sigma_{X}\right)=0.99$
5. $P\left(\frac{X-\bar{x}}{\sigma_{X}}<1\right)=P(|z| \leq 1)=1-2 P(z<-1)=1-2 \cdot \Phi(-1)=1-2 \cdot 0.1587=.6826$ (Evaluate the CDF of $N(0,1)$ at $z=-1$)
6. $P(|z| \leq 2)=1-2 \cdot \Phi(-2)=1-2 \cdot 0.0228=0.9544$
(Evaluate the CDF of $N(0,1)$ at $z=-2$)
7. $P(|z| \leq 1.96)=1-2 \cdot \Phi(-1.96)=1-2 \cdot 0.025=0.95$
(Evaluate the CDF of $N(0,1)$ at $z=-1.96$)
8. $P(|z| \leq 2.58)=1-2 \cdot 0.0048=0.9902$
(Evaluate the CDF of $N(0,1)$ at $z=-2.58$)

Answers, Exercise 5.3

Assume that the duration of horse pregnancies varies according to a normal distribution with mean 336 days and standard deviation 3 days. Find the percentage of horse pregnancies that are longer than 339 days.
$X \approx N(336,3)$. Therefore,

$$
\begin{aligned}
P(X \geq 339) & =P\left(\frac{X-\bar{X}}{\sigma_{x}} \geq \frac{339-336}{3}\right) \\
& =P(Z \geq 1)
\end{aligned}
$$

Matlab: $P(Z \geq 1)=.1587 \approx 16 \%$, with $Z \approx N(0,1)$.
(Compare previous exercise)

Answers, Exercise 5.4

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent random variables, all with variance σ^{2}. Show that the variance of $\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ is equal to σ^{2} / n.

In the lecture it has been shown that

$$
\operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{cov}\left(X_{1}, X_{2}\right)
$$

X_{1} is independent from X_{2}, so the covariances vanish. Therefore

$$
\operatorname{var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=n \operatorname{var}\left(X_{i}\right)=n \sigma^{2}
$$

Moreover, $\operatorname{var}\left(\frac{1}{n} Z\right)=\frac{1}{n}^{2} \operatorname{var}(Z)$. So, the result follows with $Z=X_{1}+\ldots X_{n}$.

Answers, Exercise 5.5

Determine the matrix of GPS correlations from the matrix of GPS covariances. (Slides 42 and 43).
To obtain entry $P(i, j)$ for $i=1,2,3$, and $j=1,2,3$ in the matrix on Slide 43, apply the following formula:

$$
P(i, j)=\frac{C(i, j)}{\sqrt{C(i, i)} \sqrt{C(j, j)}}
$$

For example,

$$
1=P(1,1)=\frac{3.05}{\sqrt{3.05} \sqrt{3.05}}
$$

and

$$
-0.09=P(2,3)=\frac{-0.49}{\sqrt{3.07} \sqrt{9.67}}
$$

Answers, Exercise 5.6

The random variable X has a uniform distribution of the interval ($-1,3$), i.e. $X \approx U(-1,3)$. What is the mean of the random variable $Y=X^{3}+4$?

Probability density function: $f_{X}(x)=\frac{1}{4}$ (compare before)
Determine first the expectation of X :

$$
E\{X\}=\int x f_{X} d x=\int_{-1}^{3} x \frac{1}{4} d x=1
$$

Let $Y \approx X^{3}+4$. Then

$$
E\{Y\}=\int y f_{Y} d y=\int\left(x^{3}+4\right) f_{X}(x) d x=\int_{-1}^{3}\left(x^{3}+4\right) \frac{1}{4} d x=\frac{1}{4}\left[\frac{x}{4}^{4}+4 x\right]_{-1}^{3}=9
$$

