AESB2440: Geostatistics \& Remote Sensing
 Lecture 4: LIDAR \& Triangular Interpolation

Overview

LIDAR

- Techniques and Principles
- Airborne, terrestrial and mobile
- AHN: Actueel Hoogtebestand Nederland

Triangular Interpolation

- Interpolation and extrapolation
- Convex hull
- Nearest neighbors
- Voronoi diagram
- Delaunay triangulation
- TINs

Interpolation properties

- Realistic results
- Robustness
- Weights
- Computational efficiency;
- Quality description

What's this?

A. Sensors: LIDAR

LIDAR

LiDAR Light detection and ranging.

$$
R=\frac{1}{2} \cdot c \cdot t
$$

R: range from laser (and receiver) to object
c: speed of light
t: two way travel time

Combine range signal with

- Position laser
- Attitude (orientation) laser

$\Rightarrow 1$ georeferenced $X Y Z$ point

From tripod to satellite

Dept. of Geoscience \& Remote Sensing
TUDelft

Range determination

Possibilities for (automated) range determination:

- Signal median
- Signal maximum
- First significant signal

Alternatives

- Multiple echoes
- Full waveform

First and Last Recording

Actueel Hoogtebestand Nederland

AHN viewer: http://ahn.geodan.nl/ahn/

AHN properties

AHN: Dutch National Laser archive
Organization: Rijkswaterstaat (Dutch Public Works Dept.)

	AHN 1	AHN 2	AHN 3
Acquisition	$1996-2004$	$2007-2012$	in progress
Point Density	$1 \mathrm{pt} / \mathrm{m}^{2}$, or $1 \mathrm{pt} / 16 \mathrm{~m}^{2}$	$8-20 \mathrm{pts} / \mathrm{m}^{2}$	
Accuracy	5 cm	5 cm	
Precison	15 cm st.dev.	5 cm st.dev.	

Products:

1. Laser points, decomposed into class terrain and other
2. Grids: 0.5 m (AHN 2), $5 \mathrm{~m}, 25 \mathrm{~m}$ \& 100 m (AHN 1)

AHN 2: 135.200.000.000 elevations 0.5 m grid

Applications, AHN

Tree inventory: http://www.boomregister.nl

Archeology
Celtic Fields in the forest
Physical Geography:
Ancient floodchannel mapping
Sustainable development: Solar panel potential

Free download from

- http://www.pdok.nl
- and via QGIS PDOK plugin

AHN over Middelburg

Dept. of Geoscience \& Remote Sensing
TUDelft

Laser Mobile Mapping

Mobile Laser Scanning: DRIVE-MAP

Source http://http://www.fugrogeospatial.com

Source http://www.slideshare.net/ICC-RS/de-waarde-van-3d-metingen
Trees Image: Jinhu Wang (Tu Delft)

Terrestrial Laser Scanning.

Static: TLS Range Image

Spherical coordinate system, centered at scanner
Here: intensity image; Alternative: range image

Varying noise levels

Viewpoint B

ICESat lake level changes at Pelku Tso

$\begin{array}{lllllllll}0.000000 & 0.050000 & 0.100000 & 0.150000 & 0.200000 & 0.250000 & 0.300000 & 0.350000\end{array}$

L2A - Oct/Nov 2003
L3A - Oct/Nov 2004
L3D - Oct/Nov 2005
L3G - Oct/Nov 2006
L3I - Oct/Nov 2007

Neighborhood Watch

References

MSc level book:

Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, Computational Geometry: Algorithms and Applications,
Springer-Verlag, 3rd edition, 2008.
Voronoi diagrams:
Read Chapter 7, Intro + 7.1, Definition and Basic Properties,

Delaunay triangulations:
Read Chapter 9, Intro +9.1 , Triangulations of Planar Point Sets, +9.2 , The Delaunay Triangulation,
Both chapters are downloadable from Blackboard.
Book website: http://www.cs.uu.nl/geobook/

Convex hull

Definition.

A subset S of the plane is convex if for any two points $p, q \in S$ the line segment $p q$ is contained in S as well. The convex hull of S is the smallest convex set that contains S.

Question: definition in 3D?
Remark: Difference between interpolation and extrapolation often defined as estimating values within or without the convex hull of the observations.

Closest Weather station

Source: http://sofser.blogspot.nl/2011/08/voronoi-diagram-for-geo-data-infochimps.html

Voronoi diagram (Euclidean)

Given is a set

$$
S=\left\{p_{1}, \ldots, p_{n}\right\}
$$

of n distinct positions in \mathbb{R}^{2}.
The Voronoi cell $V\left(p_{i}\right)$ of p_{i} consists of all points most close to p_{i}.

The Voronoi diagram of S is the subdivision of the plane in cells $V\left(p_{i}\right)$.

Voronoi diagrams consist of cells,
 edges and vertices.

Bisectors

Voronoi cells are bounded by bisectors $b\left(p_{i}, p_{j}\right)$.

Every bisector $b\left(p_{i}, p_{j}\right)$ is the intersection of two half planes

$$
b\left(p_{i}, p_{j}\right)=h\left(p_{i}, p_{j}\right) \cap h\left(p_{j}, p_{i}\right)
$$

The half plane $h\left(p_{i}, p_{j}\right)$ are those points that are not further from p_{j} then from p_{i}.

Claim. $V\left(p_{i}\right)=\bigcap_{j \neq i} h\left(p_{i}, p_{j}\right)$.
Or, in words: each Voronoi cell can be constructed as an intersection of half-planes

Question:
How many different half-planes exist for a set of, say, $n=1.000 .000$ points?

Empty circle criterion + boundary points

Recall:

$$
S=\left\{p_{1}, \ldots, p_{n}\right\}
$$

is a set of n distinct positions in \mathbb{R}^{2}.
[Empty circle criterion]
i) $q \in \mathbb{R}^{2}$ is a Voronoi vertex of $\operatorname{VD}(S) \Leftrightarrow q$ is the center of an S-empty circle.
[Participating bisectors]
ii) The bisector of p_{i} and p_{j} defines and edge in $\operatorname{VD}(S) \Leftrightarrow$ there exists $q \in \mathbb{R}^{2}$ and an S-empty disk $C_{S}(q)$ that has p_{i} and p_{j} on its boundary.
[Boundary points]
iii) $V\left(p_{i}\right)$ is unbounded $\Leftrightarrow p_{i}$ on the boundary of the convex hull of S.

See also:
http://web.informatik.uni-bonn.de///GeomLab/VoroGlide/index.html.en

Nearest neighbor

Interpolation Method 3.

1. Given is a set $S=\left\{p_{1}, \ldots, p_{n}\right\}$ of n positions with corresponding heights h_{1}, \ldots, h_{n} and an estimation position p_{0}.
2. Determine p_{i} s.t. $p_{0} \in V\left(p_{i}\right)$.
3. $h_{0}=h_{i}$.

Questions

- Weights?
- Problematic cases?
- Disadvantages?
- Generalizations?

Googe

Euler's formula

Consider a planar, embeddable graph without intersections.

```
v # vertices
e # edges
f # faces
```

Theorem [Euler's Formula]
$v-e+f=1$

Proof. Nineteen different proofs can be found here:
http://www.ics.uci.edu/ eppstein/junkyard/euler/

Corollary.

1. Number of Voronoi vertices is at most $2 \mathrm{n}-5$.
2. Number of Voronoi edges is at most 3n-6.
3. Voronoi diagram "has the same size" as the number of points

Point cloud triangulation

Let $S=\left\{p_{1}, \ldots, p_{n}\right\}$ be a set of points in a plane.

A maximal planar subdivision is a subdivision of the plane such that any edge added would intersect an existing edge.

A triangulation of S is a maximal planar subdivision with vertex set S.

Corollary: Every face except the one outside the convex hull is indeed a triangle

Question: why?

Delaunay triangulation.

A) Voronoi Diagram
\rightarrow Delaunay Triangulation:

- Draw an edge between points p_{i} and p_{j}, whenever,
- p_{i} and p_{j} share an edge in the Voronoi diagram
B) Delaunay Triangulation \rightarrow Voronoi Diagram

1. For each triangle:
2. Draw a circle through its three corner points
3. Determine the center of that circle.
4. The circle centers are exactly the Voronoi vertices (indeed they are on equal distance of....)
5. Connect two circle centers by a Voronoi edge whenever the two circles have two common corner points.

Delaunay Properties

The resulting triangulation of the convex hull of S is the Delaunay Triangulation. Note the duality:

Voronoi diagram		Delaunay triangulation
Voronoi cell	\leftrightarrow	vertex/position/point
edge	\leftrightarrow	edge
Voronoi vertex	\leftrightarrow	triangle

Why Delaunay is popular.

From properties Voronoi diagrams:
A triangulation \mathcal{T} of S is Delaunay \Leftrightarrow
The circumcircle of every triangle is S-empty.

Popularity reason 1 :
The Delaunay triangulation maximizes the minimum angle over all triangulations of S.

The minimum angle of a triangulation is the smallest angle of all 3 angles of all triangles

Popularity reason 2 :
A Delaunay triangulation is relatively fast to build

The so-called computational complexity is $\mathrm{O}(n \log n)$

Triangular Interpolation

From observations towards a Triangulated Irregular Network (TIN)

Triangular Interpolation step by step

Input: n height observations

$$
\left(x_{1}, y_{1}, h_{1}\right),\left(x_{2}, y_{2}, h_{2}\right), \ldots,\left(x_{n}, y_{n}, h_{n}\right)
$$

Wish: obtain height estimates at $2 D$ grid points c_{1} to c_{N}.

Step 1: Determine the Delaunay triangulation \mathcal{D} of the height positions $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$

Step 2: For each grid point $c_{u}, u=1 \ldots N$

- Determine the triangle $\Delta_{i j k} \in \mathcal{D}$ that contains c_{u}
- Vertices of $\Delta_{i j k}$ are observations $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)$, and $\left(x_{k}, y_{k}\right)$.
- All other observations get weight 0 for interpolation at c_{u}
- (Positive) weights for h_{i}, h_{j} and h_{k} are obtained from the triangular weight formula (next slide)

Triangular weight formula

Interpolation Method 3.

See http://www.fhi-berlin.mpg.de/grz/pub/preusser/TriFills.html

Weights:
$\hat{h}_{u}=\frac{A_{u j k}}{A_{i j k}} \cdot h_{i}+\frac{A_{i u k}}{A_{i j k}} \cdot h_{j}+\frac{A_{i j u}}{A_{i j k}} \cdot h_{k}$

Where $A_{i j k}$ denotes the area of the triangle $\Delta_{i j k}$.

So, the closer u to vertex i the more weight h_{i} gets.

Question: (Dis)advantages?

Road TIN

Conclusions (for $1 \frac{1}{2}$ lecture)

Two sensor principles

- GNSS: relatively sparse observations
- LIDAR: acquires large point clouds

Four interpolation methods

- Arithmetic mean
- Inverse distance interpolation (good for sparse data sets)
- Nearest neighbor interpolation
- Triangular interpolation (good for large, detailed data sets)

Until now: all observations are treated equal...
Still missing.

- Incorporating observation quality
- Incorporating correlation between observations

Exercises

Exercise

Exercise 4.1

In the figure, the points $p_{1}=(1,1), p_{2}=(2,2), p_{3}=(4,3), p_{4}=(4.5,4)$, and $p_{5}=(6,2.5)$ are shown. Think of these points as the result of measuring some signal as function of time.
a). Interpolate the signal on the interval $(0,8)$ using nearest neighbor interpolation
b). Interpolate the signal on the interval $(0,8)$ using linear interpolation.
c). How is linear interpolation the equivalent of triangular interpolation for 1D?
d). Interpolate the signal on the interval $(0,8)$ using inverse distance interpolation with a power of 2.

I you don't use a computer, just give a sketch.
e). Interpolate the signal in Matlab on the interval $(0,8)$ using inverse distance interpolation with powers of $p=0,1,2,3,1000$.

Exercise

Exercise 4.2

Consider the example of Inverse Distance Interpolation in the figure. Note that in this example only close by points are used for interpolation.
a). Give a criterion that would exactly result in the use of the measurements as indicated in the figure.
b). What is the power of the method used? That is, what value of p is used?
c). Estimate the height z_{p} using power $p=0,1,2,10, \infty$ from the three observations connected to point P.
d). So, what is the height using nearest neighbor interpolation?
e). Can you estimate a height using Triangle Interpolation? Why not?

Exercise

Exercise 4.3 Draw a triangulation that is not Delaunay. Why is it not Delaunay?

Answers, Exercise 4.1

c) Following the edges of the triangles in a linear interpolation gives the same result as linear interpolation along the followed line segment

Answers, Exercise 4.2

1. Criterion: e.g. distance: within radius $R=$..
2. $p=0: z_{p}=\frac{230+320+580}{3}=377$
$p=1: z_{p}=359$;
$p=2: z_{p}=334 ;$
$p=10: z_{p}=235$;
$p=\infty: z_{p}=1 / 0$, so, doesn't exist;
3. $p=\infty$: nearest neighbour; $z_{p}=230$.
4. No, this is not possible. P is outside the convex hull of the observations, so it is notably not in any triangle.

Answers, Exercise 4.3

Start with a Delaunay triangulation and flip one edge.
As long as there are no four points from a configuration of points on a circle, the Delauany triangulation of these points is unique. If you change one edge, there result is therefore not Delaunay anymore.

