AESB2440: Geostatistics & Remote Sensing

Lecture 4: LIDAR & Triangular Interpolation

Roderik Lindenbergh

April 24, 2015

1

Dept. of Geoscience & Remote Sensing

Delft University of Technology

Overview

LIDAR

- Techniques and Principles
- Airborne, terrestrial and mobile
- AHN: Actueel Hoogtebestand Nederland

Triangular Interpolation

- Interpolation and extrapolation
- Convex hull
- Nearest neighbors

- Voronoi diagram
- Delaunay triangulation
- TINs

Interpolation properties

- Realistic results
- Robustness
- Weights
- Computational efficiency;
- Quality description

What's this?

3

A. Sensors: LIDAR

Dept. of Geoscience & Remote Sensing

TUDelft

LIDAR

LiDAR Light detection and ranging.

$$R = \frac{1}{2} \cdot c \cdot t$$

- R: range from laser (and receiver) to object
- c: speed of light
- t: two way travel time

Combine range signal with

- Position laser
- Attitude (orientation) laser
- \Rightarrow 1 georeferenced XYZ point

From tripod to satellite

Range determination

Possibilities for (automated) range determination:

- Signal median
- Signal maximum
- First significant signal

Alternatives

- Multiple echoes
- Full waveform

First and Last Recording

8

Actueel Hoogtebestand Nederland

AHN viewer: http://ahn.geodan.nl/ahn/

9

AHN properties

AHN: Dutch National Laser archive

Organization: Rijkswaterstaat (Dutch Public Works Dept.)

	AHN 1	AHN 2	AHN 3
Acquisition	1996-2004	2007-2012	in progress
Point Density	1 pt/m ² , or 1pt/16 m ²	8-20 pts/m ²	
Accuracy	5 cm	5 cm	
Precison	15 cm st.dev.	5 cm st.dev.	

Products:

- 1. Laser points, decomposed into class terrain and other
- 2. Grids: 0.5 m (AHN 2), 5 m, 25 m & 100 m (AHN 1)

AHN 2: 135.200.000.000 elevations 0.5 m grid

Applications, AHN

Tree inventory: http://www.boomregister.nl

Archeology Celtic Fields in the forest

Physical Geography: Ancient floodchannel mapping

Sustainable development: Solar panel potential

Free download from

- http://www.pdok.nl
- and via QGIS PDOK plugin

AHN over Middelburg

Laser Mobile Mapping

Source http://www.slideshare.net/ICC-RS/de-waarde-van-3d-metingen

Trees Image: Jinhu Wang (Tu Delft)

13

Terrestrial Laser Scanning.

Phase scanners: modulated light wave Pulse scanners: time of flight

Footprint size: mm

Static: TLS Range Image

Spherical coordinate system, centered at scanner

Here: intensity image; Alternative: range image

TUDelft

Dept. of Geoscience & Remote Sensing

TUDelft

ICESat lake level changes at Pelku Tso

Dept. of Geoscience & Remote Sensing

ŤUDelft

Neighborhood Watch

Dept. of Geoscience & Remote Sensing

References

MSc level book: Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd edition, 2008.

Voronoi diagrams: Read Chapter 7, Intro + 7.1, Definition and Basic Properties,

Delaunay triangulations:

Read Chapter 9, Intro + 9.1, Triangulations of Planar Point Sets, + 9.2, The Delaunay Triangulation,

Both chapters are downloadable from Blackboard. Book website: http://www.cs.uu.nl/geobook/

Convex hull

Definition.

A subset *S* of the plane is convex if for any two points $p, q \in S$ the line segment pq is contained in *S* as well. The convex hull of *S* is the smallest convex set that contains *S*.

Question: definition in 3D?

Remark: Difference between interpolation and extrapolation often defined as estimating values within or without the convex hull of the observations.

Closest Weather station

Source: http://sofser.blogspot.nl/2011/08/voronoi-diagram-for-geo-data-infochimps.html

TUDelft

21

Voronoi diagram (Euclidean)

Given is a set

$$S = \{p_1, \ldots, p_n\}$$

of *n* distinct positions in \mathbb{R}^2 .

The Voronoi cell $V(p_i)$ of p_i consists of all points most close to p_i .

The Voronoi diagram of S is the subdivision of the plane in cells $V(p_i)$.

Voronoi diagrams consist of cells, edges and vertices.

Bisectors

Voronoi cells are bounded by bisectors $b(p_i, p_j)$.

Every bisector $b(p_i, p_j)$ is the intersection of two half planes

 $b(p_i, p_j) = h(p_i, p_j) \cap h(p_j, p_i)$

The half plane $h(p_i, p_j)$ are those points that are not further from p_j then from p_i .

Claim. $V(p_i) = \bigcap_{j \neq i} h(p_i, p_j)$.

Or, in words: each Voronoi cell can be constructed as an intersection of half-planes

Question:

How many different half-planes exist for a set of, say, n = 1.000.000 points?

23

Empty circle criterion + boundary points

Recall:

$$S = \{p_1, \dots, p_n\}$$

is a set of n distinct positions in $\mathbb{I}\!R^2$.

[Empty circle criterion]

i) $q \in \mathbb{R}^2$ is a Voronoi vertex of $VD(S) \Leftrightarrow q$ is the center of an S-empty circle.

[Participating bisectors]

ii) The bisector of p_i and p_j defines and edge in $VD(S) \Leftrightarrow$ there exists $q \in \mathbb{R}^2$ and an S-empty disk $C_S(q)$ that has p_i and p_j on its boundary.

[Boundary points]

iii) $V(p_i)$ is unbounded $\Leftrightarrow p_i$ on the boundary of the convex hull of S.

See also:

http://web.informatik.uni-bonn.de/I/GeomLab/VoroGlide/index.html.en

Nearest neighbor

Interpolation Method 3.

- 1. Given is a set $S = \{p_1, \ldots, p_n\}$ of n positions with corresponding heights h_1, \ldots, h_n and an estimation position p_0 .
- 2. Determine p_i s.t. $p_0 \in V(p_i)$.
- **3.** $h_0 = h_i$.

Questions

- Weights?
- Problematic cases?
- Disadvantages?
- Generalizations?

TUDelft

N.

Google

Dept. of Geoscience & Remote Sensing

Euler's formula

Consider a planar, embeddable graph without intersections.

- v # vertices
- e # edges
- f # faces

Theorem [Euler's Formula] v - e + f = 1

Proof. Nineteen different proofs can be found here: http://www.ics.uci.edu/ eppstein/junkyard/euler/

Corollary.

- 1. Number of Voronoi vertices is at most 2n-5.
- 2. Number of Voronoi edges is at most 3n-6.
- 3. Voronoi diagram "has the same size" as the number of points

Point cloud triangulation

Let $S = \{p_1, \ldots, p_n\}$ be a set of points in a plane.

A maximal planar subdivision is a subdivision of the plane such that any edge added would intersect an existing edge.

A triangulation of S is a maximal planar subdivision with vertex set S.

Corollary: Every face except the one outside the convex hull is indeed a triangle

Question: why?

28

Delaunay triangulation.

A) Voronoi Diagram \rightarrow Delaunay Triangulation:

- Draw an edge between points p_i and p_j , whenever,
- *p_i* and *p_j* share an edge in the Voronoi diagram

B) Delaunay Triangulation \rightarrow Voronoi Diagram

- 1. For each triangle:
- 2. Draw a circle through its three corner points
- 3. Determine the center of that circle.
- 4. The circle centers are exactly the Voronoi vertices (indeed they are on equal distance of....)
- 5. Connect two circle centers by a Voronoi edge whenever the two circles have two common corner points.

29

Delaunay Properties

The resulting triangulation of the convex hull of S is the Delaunay Triangulation. Note the duality:

Voronoi diagram		Delaunay triangulation
Voronoi cell	\leftrightarrow	vertex/position/point
edge	\leftrightarrow	edge
Voronoi vertex	\leftrightarrow	triangle

30

Why Delaunay is popular.

From properties Voronoi diagrams: A triangulation \mathcal{T} of S is Delaunay \Leftrightarrow The circumcircle of every triangle is S-empty.

Popularity reason 1:

The Delaunay triangulation maximizes the minimum angle over all triangulations of S.

The minimum angle of a triangulation is the smallest angle of all 3 angles of all triangles

Popularity reason 2:

A Delaunay triangulation is relatively fast to build

The so-called computational complexity is $O(n \log n)$

31

Triangular Interpolation

From observations towards a Triangulated Irregular Network (TIN)

32

Triangular Interpolation step by step

Input: *n* height observations

$$(x_1, y_1, h_1), (x_2, y_2, h_2), \dots, (x_n, y_n, h_n)$$

Wish: obtain height estimates at 2D grid points c_1 to c_N .

Step 1: Determine the Delaunay triangulation \mathcal{D} of the height positions $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Step 2: For each grid point c_u , $u = 1 \dots N$

- Determine the triangle $\Delta_{ijk} \in \mathcal{D}$ that contains c_u
- Vertices of Δ_{ijk} are observations $(x_i, y_i), (x_j, y_j)$, and (x_k, y_k) .
- All other observations get weight 0 for interpolation at c_u
- (Positive) weights for h_i , h_j and h_k are obtained from the triangular weight formula (next slide)

Triangular weight formula

Interpolation Method 3.

See http://www.fhi-berlin.mpg.de/grz/pub/preusser/TriFills.html

Weights:

$$\hat{h}_{u} = \frac{A_{ujk}}{A_{ijk}} \cdot h_{i} + \frac{A_{iuk}}{A_{ijk}} \cdot h_{j} + \frac{A_{iju}}{A_{ijk}} \cdot h_{k}$$

Where A_{ijk} denotes the area of the triangle Δ_{ijk} .

So, the closer u to vertex i the more weight h_i gets.

Question: (Dis)advantages?

Road TIN

35

Conclusions (for $1\frac{1}{2}$ lecture)

Two sensor principles

- GNSS: relatively sparse observations
- LIDAR: acquires large point clouds

Four interpolation methods

- Arithmetic mean
- Inverse distance interpolation (good for sparse data sets)
- Nearest neighbor interpolation
- Triangular interpolation (good for large, detailed data sets)

Until now: all observations are treated equal...

Still missing.

- Incorporating observation quality
- Incorporating correlation between observations

Exercise 4.1

In the figure, the points $p_1 = (1, 1)$, $p_2 = (2, 2)$, $p_3 = (4, 3)$, $p_4 = (4.5, 4)$, and $p_5 = (6, 2.5)$ are shown. Think of these points as the result of measuring some signal as function of time.

- a). Interpolate the signal on the interval (0, 8) using nearest neighbor interpolation
- b). Interpolate the signal on the interval (0, 8) using linear interpolation.
- c). How is linear interpolation the equivalent of triangular interpolation for 1D?
- d). Interpolate the signal on the interval (0, 8) using inverse distance interpolation with a power of 2. I you don't use a computer, just give a sketch.
- e). Interpolate the signal in Matlab on the interval (0, 8) using inverse distance interpolation with powers of p = 0, 1, 2, 3, 1000.

38

Exercise

Source: https://www.e-education.psu.edu/natureofgeoinfo/c7_p9.html

Exercise 4.2

Consider the example of Inverse Distance Interpolation in the figure. Note that in this example only close by points are used for interpolation.

- a). Give a criterion that would exactly result in the use of the measurements as indicated in the figure.
- b). What is the power of the method used? That is, what value of p is used?
- c). Estimate the height z_p using power $p = 0, 1, 2, 10, \infty$ from the three observations connected to point P.
- d). So, what is the height using nearest neighbor interpolation?
- e). Can you estimate a height using Triangle Interpolation? Why not?

Dept. of Geoscience & Remote Sensing

Exercise 4.3 Draw a triangulation that is not Delaunay. Why is it not Delaunay?

Answers, Exercise 4.1

c) Following the edges of the triangles in a linear interpolation gives the same result as linear interpolation along the followed line segment

″∕ T∪Delft

Answers, Exercise 4.2

1. Criterion: e.g. distance: within radius R = ...

2.
$$p = 0$$
: $z_p = \frac{230+320+580}{3} = 377$
 $p = 1$: $z_p = 359$;
 $p = 2$: $z_p = 334$;
 $p = 10$: $z_p = 235$;
 $p = \infty$: $z_p = 1/0$, so, doesn't exist;

- 3. $p = \infty$: nearest neighbour; $z_p = 230$.
- 4. No, this is not possible. *P* is outside the convex hull of the observations, so it is notably not in any triangle.

Answers, Exercise 4.3

Start with a Delaunay triangulation and flip one edge.

As long as there are no four points from a configuration of points on a circle, the Delauany triangulation of these points is unique. If you change one edge, there result is therefore not Delaunay anymore.

