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Contents - Quality

A. Robust statistics
• Median, MAD
• RANSAC

B. Monte Carlo simulation
• Stochastic error propagation
• Slope estimation example
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References

Available via Blackboard



4

Dept. of Geoscience & Remote Sensing

A. Robust methods
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Robust statistics and fitting

Outlier influence

Robust statistics

RANSAC algorithm - line fitting
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Outliers

Outliers are points far from the data
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Outliers spoil statistics!

Case 1

S1 = {1.23, 1.35, 1.45, 1.56, 1.61, 1.72, 1.74, 1.75, 1.77, 1.82, 1.83, 1.85, 1.85, 1.86, 2.04}

0. 0.5 1. 1.5 2. 2.5

mean S1 = 1.695 median S1 = 1.75

Case 2

S2 = {0, 1.23, 1.35, 1.45, 1.56, 1.61, 1.72, 1.74, 1.75, 1.77, 1.82, 1.83, 1.85, 1.85, 1.86, 2.04}

0. 0.5 1. 1.5 2. 2.5

mean S2 = 1.589 median S2 = 1.745

Question: why this number of digits in mean and median?
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Robust statistical methods

A statistical method is robust if its outcome is not changing dramatically if
outliers are added.

Mean, standard deviation: one outlier can spoil the outcome completely

Robust alternatives:
• Median,
• MAD - Median of Absolute Deviations
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Median and MAD

Let S = {1, 1, 2, 2, 4, 6}

mS = median(S) = 2

MAD(S) = median({|S1 − mS |, |S2 − mS |, . . . , |Sn − mS |}

= median({|1 − 2|, |1 − 2|, |2 − 2|, |2 − 2|, |4 − 2|, |6 − 2|})

= median({1, 1, 0, 0, 2, 4})

= 1

Scale MAD to get the equivalent of Standard Deviation.
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Quantiles

Let F be a distribution function.

For a random variable X, the distribution function is fiven by

F : IR → [0, 1], s.t. F (a) = P (X ≤ a), for − ∞ < a < ∞

Sample Median: qn(.5) ≈ q0.5 = F−1(0.5), the distribution median

Or, more general,

pth empirical quantile: qn(p) ≈ qp = F−1(p), the distribution quantile
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Robust maximum and minimum

Question: How does the expectation
relates to the sample median for
symmetric distributions?

Question: What are robust
alternatives for the maximum and
minimum of a (large) data set?

Source https://www.rockware.com/rockworks/revisions/2005$_$q2.htm

https://www.rockware.com/rockworks/revisions/2005$_$q2.htm
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MAD vs. Standard Deviation

Claim: Let F be an arbitrary normal distribution N(µ, σ2) with mean µ and
standard deviation σ and let Φ be the standard normal distribution N(0, 1).
Then

MAD(F ) = σΦ−1(.75) ≈ 0.6750σ

Question. So how to get a robust equivalent of the standard deviaton?

Sketch of the proof of the claim:

1. Let X be a random variable of F , and let m be the median of F . The distribution function of the
random variable Y := |X − m| is given by

G(y) = F (m + y) − F (m − y)

2. MAD(F ) = median(G) and

G
−1

(.5) = F
−1

(.75) − F
−1

(.25)

[F.M. Dekker et al.,A modern introduction to Probability and Statistics, Springer, 2005]
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Outlier removal: Top Down

Mitigating the effect of outliers:

Simplistic Top Down approach:

1. Start with all the data

2. Fit e.g. a line through the data

3. Estimate the st.dev of the line fit

4. Remove all data over 3σ away

5. Go back to Step 1.

Disadvantages??
• ...
• ...
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Diagnostic Methods

Top down:
Do your thing and afterwards evaluate where it goes wrong.

More sophisticated method:
Data snooping: stochastic evaluation of outliers

Recall least-squares:
y = {y1, . . . , yn} Vector of observations
ŷ Vector of adjusted observation
ê := y − ŷ Vector of Residuals

w-test:
Is the error êi in observation yi acceptable, given the known quality of this
observation?

Question: remaining problem with this method?
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Bottom up: The RANSAC paradigm

Recall: in many cases there are
many more observations then
needed to fit a geometric object.

Example
Plane on the right:
• Maybe 100 000 points in 3D
• How many points needed?

RANSAC:

1. Use as little (random)
observations as possible for
fitting/estimating

2. But repeat that many times

3. Finally select the best option
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Ransac - line interpolation

RANSAC - Random Sample Consensus

RANSAC for line fitting (example)

1. Select two random points

2. Fit a line through the two points

3. Determine residuals between all points and line

4. Divide points into two classes
(a) inliers - points with small residual
(b) outliers - points with large residual

5. Score of the run: number of inliers

6. Return to 1.

Choose, after enough runs, that fit that has the highest score, i.e. the largest
amount of inliers
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Ransac - line fitting result

Number of iterations ⇔ Number of outliers

Example:
If 50% is inlying, the chance of randomly picking two inliers is 0.25

Note: More parameters needed to parameterize underlying model
⇒ more iterations needed!
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RANSAC - general setup

n number of observations e.g. laser scanner: n ≈ 100000

m number of model parameters line: m = 2

p probability that observation be-
longs to model

(nr. of inliers)/n

ǫ model treshold maximum distance between ob-
servations and model

k number of trials should be enough to get a
model fit based on inliers only
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Number of RANSAC trials needed

z := Prob( at least one trial is outlier free )
= 1− Prob( all trials contain outliers )
= 1 − (1 − pm)k

⇒ (1 − z) = (1 − pm)k

Corollary. In order to ensure one outlier free trial, on average at least k trials
are needed, with

k =
log(1 − z)

log(1 − pm)

Example. [Line Fitting.] Number of points n = 50; Inlier probability p = 50%;
Number of model paramaters m = 2.

Probability z on an outlier free trial 90 % 99 % 99.9 %
Average required number of runs k 8 16 24
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RANSAC for point cloud segmentation

Efficient RANSAC for Point-Cloud Shape
Detection,
Ruwen Schnabel, Roland Wahl und Reinhard
Klein
In: Computer Graphics Forum (Juni 2007),
26:2(214-226)

http://cg.cs.uni-bonn.de/de/publikationen/paper-

details/schnabel-2007-efficient/
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B. Monte Carlo Simulations
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Does slope affect tree height estimation?

Source http://lbi-archpro.org/als-filtering/lbi-project/reference-data-set

http://lbi-archpro.org/als-filtering/lbi-project/reference-data-set
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Propagating uncertainty

Errors in the measurements propagate into errors in estimated parameters.

Example.
Figure: errors in current measurements result in uncertainty in the estimated
slope.

http://spiff.rit.edu/classes/phys311/workshops/w2c/slope_uncert.html

http://spiff.rit.edu/classes/phys311/workshops/w2c/slope_uncert.html
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Assessing the propagated uncertainty

At least three approaches:

A. Validation against ground truth data.
• Needed: data of better quality
• Often not available, certainly not for derived parameters

B. Formal error propagation
• Example: Kriging variance depends on quality and proximity observations
• Still difficult to get insight in the sensitivity of derived parameters to errors

in the observations.

C. Simulating many possible results
• Variation in the outcomes of the results gives insight in the sensitivity
• Possible to directly simulate the needed derived parameters
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Example: slope determination

Consider the slope at the middle E of
the 3 × 3 window.

Simple method for estimating
slope s:

∇x ≈
1

2
(F − D)

∇y ≈
1

2
(B − H)

∇ = (∇x,∇y)

s = ‖∇‖ =
q

∇2
x + ∇2

y

=
1

2

p

(F − D)2 + (B − H)2

G H I

D E F

A B C

1 2 3

1

2

3

Question. Other methods for slope estimation?
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Example: slope estimation

Suppose we are given the
observations on the right.

Slope estimation based on the
observations:

ŝ =
1

2

p

(F − D)2 + (B − H)2 = 0.354
7.2 7.2 6.7

7.6 7.4 7.5

7.7 7.9 8.3

1 2 3

1

2

3

B

D F

H

Question: What is this slope in degrees?

Problem: not clear now how reliable this estimation is.
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In situ validation

Possible, but strenuous

Source https://www.youtube.com/watch?v=vlCiJma_rpA

https://www.youtube.com/watch?v=vlCiJma_rpA
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Formal error propagation, example

Assume parameter g(X) depends linearly on random variable X, that is

g(X) = rX + s, with r, s ∈ IR

Assume, moreover, that X is normally distributed with standard deviation σX .

Question. What is E{g(X)}?
Before: E{rX + s} = rE{X} + s

Question. What is the variance of the random variable Y = rX + s?
σ2

Y = E[(Y − Ȳ )2] = E[((rX + s)− (rX̄ + s))2]} = E[r2(X − X̄)2] = r2E[(X − X̄)]2 = r2σ2

X .

Conclusion: for a simple relation g(.) we have propagated the uncertainty in
X to the uncertainty of g(X).

Question. Is our relation for the slope ‘simple‘?



29

Dept. of Geoscience & Remote Sensing

Monte Carlo simulation, idea

1) Generate many possible scenario’s of height values,

2) Determine for each scenario the corresponding slope

3) Evaluate the spread of the slope results over the different scenario’s

Source http://www.dailytech.com/Detroit+Researcher+Receives+250000+NSF+Grant+for+New+Structural+Failure+Method/article237

http://www.dailytech.com/Detroit+Researcher+Receives+250000+NSF+Grant+for+New+Structural+Failure+Method/article23748.htm
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Monte Carlo method, input

Input:

A) Relation v = g(u1, u2, . . . , uk)
between observations u1, . . . , uk and
derived parameter v.

B) cumulative distribution functions
Fui

: IR → [0, 1] for each of the
observations u1, . . . , uk.

Recall: cumulative distr. function is defined as

F (a) = P (X ≤ a), for−∞ < a < ∞

where P stands for Probability, [Dekking et al.,

2005]

Source http://www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html

http://www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html
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Draw from a distribution

Obtaining a distribution:
• Experimental, e.g. from many repeated measurements
• From a quality description. For example, if an observation has value 12

and st.dev = 2, its corresponding distribution is N (12, 2).
...assuming it has a normal distribution

Question.
What could be the parameters of the
blue distribution in the figure?

To make a draw:
• Generate random number p

between 0 and 1

• Idenitify a such that F (a) = p. -10 -5 0 5 10 15

0.2

0.4

0.6

0.8

1

Remark. Compare Matlab command randn
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Example: DTM uncertainty

Suppose we are given the
observations on the right.

Moreover, the st.dev of the
observations is specified as σ = 0.2,

So,
B ∼ N (7.9, 0.2)

D ∼ N (7.6, 0.2)

F ∼ N (7.5, 0.2)

H ∼ N (7.2, 0.2)

7.2 7.2 6.7

7.6 7.4 7.5

7.7 7.9 8.3

1 2 3

1

2

3

B

D F

H
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Monte Carlo simulation

One Monte Carlo experiment:

1. Draw k random numbers pu1
, . . . , puk

between 0 and 1.

2. Determine the corresponding values ũ1, . . . , ũk, s.t. F (puj
) = uj .

Simulation of each of the observations

3. Determine ṽ = g(ũ1, ũ2, . . . , ũk)
Simulation of the derived parameter

Repeat the experiment many (e.g. 10 000) times and collect the outcomes of
each experiment
Gives 10 000 simulated values ṽ.

Distribution of the different outcomes for ṽ gives insight on the sensitivity on
the variation in the input observations ui. (according to the given cdfs Fui

)
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100 slope estimations

First run:
B̂1 = 7.86, D̂1 = 7.88, F̂1 = 7.47, Ĥ1 = 7.41,

So
ŝ1 = 0.31

Simulation consisting of 100 runs:

Mean slope: s100 = 0.382;

St.dev. slope: σ100 = 0.139.

0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

35
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Results, Monte Carlo simulation

1st Conclusion.
We got a quality desciption of the slope estimation!

Method comparison
Could use MC as a tool to select between different estimation methods:
How do the simulation distributions compare?

In addition, full resulting distribution allows to
• Assess exceeding risks
• Assess the probability the slope is within a certain interval
• ...
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Assumptions, Monte Carlo

Question
What assumptions did we make?

Question
What are the computational efforts?

Question*
Is the outcome also normally distributed?
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Conclusions

The results of spatial data processing are largely useless if the
quality is unknown.

Validating classification results is pretty straightforward using the
confusion matrix.

Outliers may spoil your statistics:
• Evaluate your results: do they make sense?
• Could outliers play a role?
• Use robust methods like RANSAC if necessary

Beware:
Errors propagate from the observations in derived results.

Monte Carlo simulation is one technique to estimate the influence of errors.
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Exercises
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Exercise on RANSAC

Exercise 10.1 Consider a flat rock face sampled by 10 000 laser points. Approximately 1000 of the
points are considered outliers. We are fitting a plane through the 3D points using RANSAC

a). How many points define a plane in 3D?

b). In what exceptional situation is it not possible to fix a plane with three different points?

c). What is the probability that a laser point belongs to the plane?

d). What is a good distance threshold? That is, what distance would you tolerate between a laser
point and the fitted plane?

e). How many trials are needed to have a 90 % probability on at least one outlier free trial?

f). Same question for 99 %.
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Exercise on Monte Carlo simulation

Exercise 10.2 In the course slides a slope is estimated from a 3 × 3 window based on the four
closest neighbours.

a). Sketch how a slope can be estimated in a similar way from a all eight neighbours.

b). Do you expect that the simulated Monte Carlo st.dev will increase or decrease if we use more
observations in this way (assuming all observations have the same quality). Why?

An alternative approach is to first fit a plane through all nine observations (compare Lecture 6) and
determine the slope from the plane.

c). Give the formula for the slope of a plane given by the equation z = ax + by + c.

d). Determine the slope of the plane best fitting the observations of Exercise 6.8.

e). Sketch how to use the Monte Carlo framework to derive a st.dev. of the slope estimation using the
fitted least squares plane.

f). Perform the simulation in e.g. Matlab (100 runs) and compare the outcomes with the outcomes in
the slides (using the four closest neighbours). Use the observations given in Exercise 6.8 and
take σ = 0.2 for the quality of the observations.
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Answers, Exercise 10.1

a) In general three points define a plane.

b) When the three points are all on one line

c) In this case 90 %

d) Something like 5 cm (compare to specifications of scanner devices)

e) The probability on an error free trial. To get 90% probability: 2 trials is enough;
(Compare slide 23, here m=3; p=0.9; z=.9).

f) 99% probability: 4 trials is enough. Use now z=99.
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Answers, Exercise 10.2

a) Compare slide 25. you could estimate the gradient in the x-direction by taking the average of 0.5(C-A), 0.5(F-E) and

0.5(I-G). Similarly for the gradient in the y-direction.

b) I expect the st.dev will become smaller. More observations used, so planes wil be more similar, and less varying in

slope.

c) Compare, Lecture 9, slide 13. slope =
p

(f2

x + f2

y ). Write f = ax + by + c; Then fx = a; fy = b; so the

slope equals
p

(a2 + b2)

d) Exercise 6.8: plane parameters are: a=0; b = 0.47; c = 6.57; So the slope equals 0.47 as well.

e) In each run, a new vector of observations vecy_sim is generated, consisting of the original observations of Exercise

6.8 with random noise added. To generate the noise, a normal distribution with a st.dev of 0.2 is used. So, one such

simulated vector of observations could look like

vecy_sim = vecy + vec_noise =

(7.2, 7.2 ,6.7, 7.6, 7.4, 7.5 ,7.7 ,7.9 ,8.3) + (-.12, 0.03, 0.05, -0.12, .06, -.05, .07, .1, -.01)

Then the least squares plane is fitted like in Exercise **5.1 but using vecy_sim instead of vecy. This results in

xhat_sim = (a_sim, b_sim, c_sim).

Using a_sim and b_sim the slope s_sim is determined as ssim =
p

(a2

sim + b2sim). This is the result of one run.

Many runs (e.g. 100) result in a variety of slopes that can be used to estimate a standard deviation.

f) This is left to the student.
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