268

dependence of either the thermal or electrical conductivity need be considered. The surface of the wire is maintained at temperature T_0 . We now show how one can determine the radial temperature distribution within the heated wire.

For the energy balance we select as the system a cylindrical shell of thickness Δr and length L. (See Fig. 9.2–1.) The various contributions to the energy balance are

rate of thermal energy in across cylindrical surface $(2\pi r L)(q_r|_r)$ (9.2–2)

rate of thermal energy out across cylindrical surface $(2\pi(r+\Delta r)L)(q_r|_{r+\Delta r})$ (9.2–3) at $r+\Delta r$

rate of production of thermal energy by
$$(2\pi r \Delta r L)S_e$$
 (9.2–4) electrical dissipation

The notation q_r means "flux of energy in the r-direction," and $|_r$ means "evaluated at r." Note that we take "in" and "out" to be in the positive r-direction.

We now substitute these three expressions into Eq. 9.1-1. Division by $2\pi L \Delta r$ and taking the limit as Δr goes to zero gives

$$\left\{\lim_{\Delta r \to 0} \frac{(rq_r)|_{r+\Delta r} - (rq_r)|_r}{\Delta r}\right\} = S_e r \tag{9.2-5}$$

The expression within braces is just the first derivative of rq_r with respect to r, so that Eq. 9.2-5 becomes

 $\frac{d}{dr}(rq_r) = S_e r (9.2-6)$

This is a first-order ordinary differential equation for the energy flux, which may be integrated to give $q_r = \frac{S_e r}{2} + \frac{C_1}{r} \qquad (9.2-7)$

The integration constant C_1 must be zero because of the boundary condition

B.C. 1: at
$$r = 0$$
 q_r is not infinite (9.2-8)

Hence the final expression for the energy flux distribution is

$$q_r = \frac{S_e r}{2} \tag{9.2-9}$$

This states that the heat flux increases linearly with r.

We now substitute Fourier's law (see Eq. 8.1-2) in the form $q_r = -n(m_r)^m$, into Eq. 9.2-9 to obtain

 $-k\frac{dT}{dr} = \frac{S_e r}{2} \tag{9.2-10}$

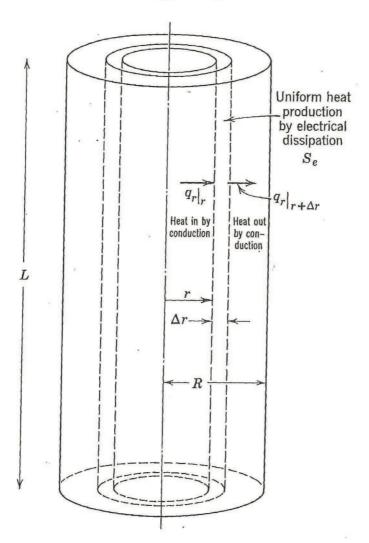


Fig. 9.2-1. Cylindrical shell over which energy balance is made in order to get temperature distribution in an electrically heated wire.

When k is assumed to be constant, this first-order differential equation may be integrated to give

$$T = -\frac{S_e r^2}{4k} + C_2 (9.2-11)$$

The integration constant C_2 is determined from

B.C. 2: at
$$r = R$$
 $T = T_0$ (9.2–12)

Hence C_2 is found to be $T_0 + (S_e R^2/4k)$ and Eq. 9.2-11 becomes

$$T - T_0 = \frac{S_e R^2}{4k} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$
 (9.2-13)