
tn4780ta 2013-14 
Part 1 Final Examination - 28 Jan. 2014 

Write your solutions on your answer sheet, not here. In all cases show your work. 
To avoid any possible confusion, 

state the equation numbers and figure numbers of equations and figures you use. 
Beware of unnecessary information in the problem statement. 

1. When an automobile tries to stop in wet weather, a f i lm of water between the 
automobile tires and the road can greatly reduce its ability to decelerate. Suppose an 
automobile is traveling at 48 km/hr (13.4 m/s). Its tires are "bald," and the surface of 
the street is absolutely flat, so in effect the water f i lm (properties given below) is a 
flat fi lm of thickness 0.5 mm, between a moving, flat surface (the tires) and a fixed 
flat surface (the road). Assume the four tires, each, have a surface area on the road of 
15 cm X 30 cm (i.e., total area for all four = 0.18 m^). Ignore any edge effects around 
the edge of the tires where the tires and the road meet. 
a. Assuming laminar flow apphes, what force do the tires as a group exert to slow 

down the car at the first instant, when the car is going 13.4 m/s? If the car weighs 
900 kg, what is its initial rate of deceleration? 

b. Is the assumption of laminar flow in part (a) justified? If you are unable to 
answer this question quantitatively, tell how you would obtain an answer. 

(In fact, roads are roughened and tires are not flat, in order to prevent this sort of f i lm 
from forming. That is why it's so important to replace bald tires.) 
(20 points) 

tire: 13.4 m/s 

water 

road, fixed in place 

properties of water 
^ = 0.001 Pas p = 1000kg/m^ 

2. An insect is blown off from the top of a tall building into the air. It doesn't have 
wings and can't fly, but as it falls, it spreads out is legs, giving it drag equivalent to a 
sphere 5 mm in diameter. Averaged over this diameter, its density is 125 kg/m . 
Treating the insect as a sphere of density 125 kg/m^ what is its steady velocity as it 
falls through the air? The properties of air are given below. 

Don't worry about whether the simphfications I make are correct; just solve the 
problem as posed. 
(25 points) 

0.5 mm 

properties of air 
\i = 1.75x10"̂  Pa s p = 1.26 kg/m^ 



3. Water flows out from a tall tank, through an abrupt, shaip (not rounded) entrance into 
a pipe 2 cm in diameter; the pipe goes down 0.5 m, then right 1 m, then up 2 m; there 
are two sharp 90° elbows along the way (see picture below). Water shoots out the 
open end of the pipe with velocity 5 m/s. The roughness of the pipe wall is 0.005 cm. 
The properties of water are given in problem 1. 

a. What is the height of the water in the tank, H? 
b. The engineer working on this problem is not very sure about the roughness in the 

pipe. He thinks the pipe might be much rougher, increasing the drag in the pipe by 
a factor of 2 or more. How much difference would that make to the value of H? 
Briefly justify your answer. If you're not able to answer part (a), describe how you 
would answer this question. 

(35 points) 

5 m/s 

2m 

1 m 

Suppose a tube of radius R is filled with Newtonian fluid in steady flow. The viscosity 
of this fluid is not uniform in the tube, however, but varies with radial position r as 

1 
f 

A+B 
[RJ J 

where A and B are constants (This equation is related to a model for flow of polymer 
solutions through narrow pores, where the polymer avoids the pore wall.) This 
problem is similar to the problem of a Newtonian fluid in a tube in solved in BSL 
Section 2.3 (pages attached to end of this exam). 
a. What is the last equation in that derivation that can be used directly in this problem? 
b. Starting with that equation, derive the velocity profile in the tube, Vz(r). 
(20 points) 
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We consider then the steady laminar flow of a fluid of constant density p 
in a "very long" tube of length L and radius R; we specify that the tube be 
"very long" because we want to assume that there are no "end effects"; that 
is, we ignore the fact that at the tube entrance and exit the flow will not 
necessarily be parallel everywhere to the tube surface. 

Momentum in by flow Pressure 

Momentum 
flow in 
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by viscous 
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Momentum out by flow Pressure p. 
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Fig. 2.3-1. Cylindrical shell of fluid over which momentum balance Is made to get the 
velocity profile and the Hagen-Polseullle formula for the volume rate of flow. 
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We select as our system a cylindrical shell of thickness Ar and length L 
(see Fig. 2.3-1), and we begin by listing the various contributions to the 
momentum balance in the z-direction: 

rate of 
momentum in 
across cylindrical 
surface at r 

(2,rrLT„)|, (2.3-1) 

••••^eloci.ty. Pi$i:ribu(:ions i n L a m i n a r F l o w 

rate of 
momentum out 
across i:ylindrical 
surface at r -1- Ar 

rate of 
momentum in 
across annular 
surface at « == 0 

rate of 
momentum out 
across annular 
surface at z = L 

gravity force 
acting on cylindrical 
shell 

pressure force 
acting on annular 
surface at « ^ 0 

pressure force 
acting on annular 
surface at z = L 

{27rrLT„)Ir+Af 

(2wrAr vXpvX-^o 

(2-n-rAr vXpv,)l=L 

(27rrArL')pg 

'(27rrAr)po 

(2.3-2) 

(2.3-3) 

(2.3-4) 

(2.3-5) 

(2.3-6) 

(2.3-7) 

Note once again that we take " in" and "out" to be in the positive direction 
of the axes. 

We now add up the contributions to the momentum balance: 

,(27rrir„)|, - (2TrrLr,,)U^, + (2^r>J'p'i^)|,=(, 
- i2m-^,}--pé)U^jc + 2wr ArLpg + 27rr A7-(po - Pi) = 0 (2.3-8) 

Because the fluid is assumed to be incompressible, v~ is the same at« = 0 and 
z = L, hence the third and fourth terms cancel one another. We now divide 
Eq. 2.3-8 by InL Ar and talce the limit as Ar goes to zero; this gives 

lim 
•Ar-*0 

•f-Ar • 

Ar 
Po-Pi. 

+ PS r (2.3-9) 

The expression on the left side is the definition of the first derivative. Hence 
Eq. 2,3-9 may be written as 

d , . 
— ( f - r j 
dr h 

(2,3-10) 
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f in whicy = p — pz^- Eq. 2.3-10 may be integrated to give: 

(2.3-11) 
2L / r 

Tlie constant must be zero i f the momentum flux is not to be infinite at 
/• = 0. Hence the momentum flux distribution is 

This distribution is shown in Fig. 2.3-2. 

Parabolic velocity 
distribution v.(r) 

Linear morfientum 
flux distribution 

(2.3-12) 

Rg. 2.3-2. Momentum flux and velocity distributions in flow in cylindrical tubes. 

Newton's law of viscosity for this situation is 

dv. 

dr 
(2.3-13) 

^ The quantity represents the combined effect of static pressure and gravitational force. 
To allow for other flow orientations, may be defined more generally as3» =p + pgh, 
where h is the distance upward (that is, in the direction opposed to gravity) from any chosen 
reference plane. 

SvhsÜtation of £iiis relation into Eq. 2.3-12 then gives tlie following differen­
tial equatioa for the velocity; 

dr \ 2p,L 
Integratioa o-f itiiis -gives 

Because of the lioiindaTy condition feat v- be zero at r = i?, the constant Cg 
lias tïiie value (^o ~ ^£}R^'j4f.iL. Hence the velocity distribution is 

(^0 ~^:£0\. I r 2' 

(2.3-16) 

Tins Tesuif teils TÜS that the Yelocity distribution for laminar, ineompressible 
flow in a tal^e is parabolic. (See Fig. 2.'3-2.) 

Once the velocity profile has been established, vaJrious derived quantities 
are easily calculated: 

(i) The maximum velocity v^^.^^ occurs at r = 0 anid has the value 

, „ ^ , < M S Ï 0.3-17) 

(Ü) The avèmge velociiy (v^) is calculated by summing up all fhe velocities 
over a cross section and then dividing by Üie cross-sectional area: 

rs. 

• < - ^ > = — = ^ " ^ 2 ^'-"-''^ 

rdrdd 
JQ JQ 

The details of the integration aie ieft to the reader. Note that (»̂ > — 
•h) 

(iii) Tlie volume rate offl.ovi! Q is the product of area and average velocity; 
thus 

Q.^-(^o-^^)R' (2.3-19) 
EpcL 

This rather famous result is called the Hagen-Poiseuille^ law in honor ofthe 
two scientists '̂*' credited with its formulation. I t gives the relationship 

^ Pronounce Poiseuille as "Pwah-ze'-ytih/' in which a is roughly the same as the "oo" 
in fhe American pronunciation of "boolc". 

= G. Hagen, Arm. Phys. CheirL, 46,423-442 (1839). 
L. Poisemllis, CompieHendus, \%, 961 and 104Ï (1840); 12,112 (1841). 


