UNIT ONE:
FLUID MECHANICS
(MOMENTUM TRANSFER)

11. Constitutive Equations
A. Difference between fluid and solid
perfectly elastic solid: given shear stress T --> finite deformation; returns to

original shape if force is released

fluid: given shear stress T --> finite rate of deformation; further deformation stops
if force is released, but there is no return to original shape (unless an
opposite force is applied)
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B. Definition of shear stress
Consider body of fluid with small rectangular element of fluid within it

Newton's second law: force = change of momentum
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units of shear stress:
represented as flux of momentum: momentum/area/time
represented as force/area: force/area
- units are same in either case: (m/L t2)

C. Newton's "law"" of viscosity

1. Statement of Newton's law
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F/A = - 1 (Avy/Av)= - [(0- V)I(Y -0)] = 1 (V1Y)

Tyx = = w(dvy/dy)

Newtonian fluids:

b. beware the sign in Newton's law!
c. kinematic viscosity: V = 5

d. units (BSL p. 14; also BSL App. C)
sLK 20

[Rs of w]

CentiPolse



2. Molecular origins of Newtonian viscosity
BsLIC Frgl b=l
consider simplest case: ideal gas, small molecules (BSL fig. 1.4.1)

molecules cross streamlines in random motions; they take their momentum with them when they
Cross

exchange of molecules between streamlines, on average, transfers momentum from fast streamlines
to slow ones
(cf. figure (2-27) from Roberson and Crowe of people moving between
conveyor belts)

This momentum transfer is origin of "viscosity" in ideal gases
(situation is more complicated in liquids)

In each exchange,
» distance is short
¢ amount of momentum transferred is small
(though there are many exchanges per unit volume per unit time)

Don't sweat rest of BSL section 1.4
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INFINITE PARALLEL PLATES ARE
IMPOSSIBLE, OF COURSE.

THEN HOW CAN ONE MEASURE VISCOSITY?

USING CONCENTRIC CYLINDERS. IF GAP WIDTH-O0,
GAP APPROXIMATES PLANAR GEOMETRY.
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IF GAP WIDTH -0, NEED CORRECTION FACTORS

. . . THE IDEA BEHIND "FANN"
VISCOMETER



MAGNITUDES OF u

CRUDE OILS >> WATER >> GASES

TRENDS OF p
WITH TEMPERATURE AND PRESSURE

PURE LIQUIDS
« 1 DECREASES AS TEMPERATURE INCREASES

- BASIS OF THERMAL E.O.R.
o p RELATIVELY INDEPENDENT OF PRESSURE

GASES AT LOW PRESSURE
. nINCREASES AS TEMPERATURE INCREASES

« p INDEPENDENT OF PRESSURE

GASES IN OR NEAR CRITICAL REGION
o TRENDS OF p WITH T AND P ARE COMPLEX

CRUDE OILS WITH DISSOLVED GAS
. DISSOLVED GAS REDUCES p OF OIL
- - PART OF BASIS FOR CO; E.O.R.
« p DECREASES AS P DECREASES, UNTIL
BUBBLE POINT REACHED
« p INCREASES AS P DECREASES FURTHER, AS
GAS LEAVES SOLUTION



IL. D. non-Newtonian fluids (BSL 1% ed.)
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1. motivation:

sometimes want fluids that sometimes behave like solids: B.oﬁ\\am Plasuie

sometimes want fluids that have low viscosity near well,
high viscosity away from well: ! Fowes law €mo\ ( ‘Shear’ bnoq, g spec. u:lbj)

Recall for Newtonian fluid: Tyx = - [t (dvx/dy)

2. Bingham plastic
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C.

two parameters: [, To
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Note: if 1, --> 0, Bingham plastic --> Newtonian fluid

examples of fluids with yield stress:

- "Panuk burke ¢
-Qukella
- P(\O_Bon onse

= PCL\ nk

-Wax

two asides:
why does honey tear bread, while mayonnaise does not?

why does ketchup get stuck in the neck of a ketchup bottle?
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3. power-law fluid (Ostwald-de Waele fluid)
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b. two parameters: m, n

m: Seemetimes called ‘consistenty incex?

n: Pawerlaw index

Ifn = 1: Newtonian fluid, withm=p

n<1: "shear thinning", "pseudoplastic”

n>1: "shear thickening", "dilatant"

( (recall definition of |x|:

ifx20, [x|=x
ifx<0, x|=-=x)




4. effective viscosity of non-Newtonian fluids
a. general definition:
The "effective viscosity" of a non-Newtonian fluid is the viscosity of a Newtoran Tl

hypothetical Newtonian fluid that would give the same © esulk
as the real fluid does in the same S tuatici

(Definition applies even if have no idea of true nature of fluid or even of how
viscometer works - see homework)

b. effective viscosity for shear flow between parallel plates

The "effective viscosity" of a non-Newtonian fluid in shear flow between parallel plates is the
viscosity of a hypothetical Newtonian fluid that would
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Note; the given value of "effective viscosity" may not apply to other situations:
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SUMMARY OF BEHAVIOR -«
OF DIFFERENT FLUIDS
IN SHEAR FLOW
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