III. Shell Momentum Balances
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C. outline of shell momentum balance approach
(BSL ch. 2) @Dslik P.L0)

Procedure: (cf. BSL section 2.1)
1. SELECT COORDINATE SYSTEM; DEFINE CONTROL VOLUME

2. STATE BOUNDARY CONDITIONS *

3. PERFORM MOMENTUM BALANCE **
4. THICKNESS - 0 (= dif. eq. for 1)
a) (optional): solve dif. eq. for 7, apply b.c. - IF b.c. applies to T alone
5. RELATE 1 TO dv/dx (apply constitutive equation)
6. SOLVE DIF. EQ. FOR v; APPLY B.C. *
a) (optional) COMPUTE w (mass rate of flow) or Q (volume rate of flow), etc.

* BOUNDARY CONDITIONS (cf. BSL section 2.1) Ao @sLix 4a.

1. SPECIFY v AT SOLID SURFACE o-slp’ Re.
la) FLUID v = SOLID VELOCITY AT SOLID WALL

. SPECIFY t© AT FLUID SURFACE
2a) INLIQUID,t=0 AT GAS LF.
2b) 1, v CONTINUOUS ACROSS LIQUID/LIQUID LF.

3. 1, v NOT INFINITE ANYWHERE IN REGION OF INTEREST

%]

"ALL BOUNDARY CONDITIONS ARISE FROM NATURE"
(i.e., from problem statement)

** ELEMENTS OF MOMENTUM BALANCE

MOMENTUM FLUX (o area); called "¢" tensor in BSL (sect. 1.7) (RS LIZ Se&k 1.3)
1. CONVECTION OF MOMENTUM THRU SURFACE (pvv)

2. SHEAR STRESS © ON SURFACE ("molecular transport of momentum")
3. PRESSURE PRESSING INWARD ON SURFACE - p

MOMENTUM "GENERATION" or "SOURCE" (ot volume)
4. BODY FORCES WITHIN VOLUME

MOMENTUM ACCUMULATION (o volume) (not at steady state!)
5. ACCELERATION OF SYSTEM MASS - d(p v)/ot




1. Four aspects can vary from one problem to another

° aeomeud (Cotduniate S\\_js,tﬁm)
> elements + n Momenbm ‘oalance
© b:decwj condition g
° Constitutve equation
( relaxica tetween T ¢ aal ew/dg\)

D. Examples
1. Falling film
a. Newtonian fluid - BSL Sect. 2.2
i. Newtonian fluid with position-dependent viscosity -
BSL Ex. 2.2-2

Since geometry and momentum balance are unchanged (see C.1 above),
can jump directly to Eq. 2.2-13 (2.2-26)

Don't sweat the algebraic details

b. Bingham plastic - to be covered on homework
2. flow through circular tube
a. Newtonian fluid - BSL Sect. 2.3
i. an aside: flow of ideal gas in tube (attached)

equations used in natural gas engineering
not required material for this course



b. Bingham plastic in tube - BSL Ex. 2.3-2 (first edition of BSL)

Notes:
o only the relation between 1, and (dv,/dr) changes from Newtonian fluid in tube;

geometry, momentum balance, boundary conditions are unchanged.
Therefore everything thru Eq. 2.3-13* still applies

o Recall definition of Bingham plastic:

dvy

Trz TiHeTEy Y Y Trz=To

dv,

dr =0 - T0=Tz<To
dv,

Tz == Lops=is &0 z=-To

o Drawing a picture of 1,(r) is essential (cf. Fig. 2.3-3%)

i. calculating Q and w for Bingham plastic in tube

AP R ;
o calculatetg = 57 - [SUR SRR D

> compare Tg, To:
- if1tg <15, Q=0,and w=0. Don't use Eq. 2.3-30*!
- iftg =10, Q given by Eq. 2.3-30. w=Qp

(* - Eq. no. 2.3-12 from 1* ed. of BSL)

tips for homework:




¢. Power-Law Fluid
Key points in this derivation are as follows:

1) Because the system geometry, elements in the momentum balance, and
boundary conditions are the same as for flow of a Newtonian fluid in a tube
(BSL Section, 2.3), we can skip directly to Eq. 2.3-13, just before Newton's
law is introduced in Section 2.3.

2) Itisimportant to recall the mathematical definition of absolute value:
Xl = x ifx>0
=i=x ifx <0,
3) Recall that one cannot take arbitrary, fractional

: 5 powers and roots of negative
numbers (unless one is working with imaginary numbers).
4) Due to points (2) and (3), it is important to identify from the start the sign of

(dv/dr). Of course, deriving v,(r) is the point of the exercise, so one has to
sketch out the expected shap

(1]

e of V(1) to guess in advance what the sign of
(dvz/dr) will be.
't r
¥, Expect
Y,=maxatr=10
¥ v,=0atr=R
z
therefore (dv4dr)< 0 Tz
KNOW {from BSL 2.3-13)
L/ e

BSL Eq. 2.3-13, for flow of any fluid in a tube:

Pa _PL
Tyz — T L3

(2]
For a power-law fluid,
dvz| n-1 dv, i
mp=smi ey [3]
Eventually we want to get rid of the absolute value. As a first step, we need to combine
both derivative terms within the absolute value. Since (dvz/dr) <0 in this case (see
diagram above), (dv,/dr)=-|dvz/dr|; therefore
dvz| n-1 dv, dvz| n
L el | S WL [4]

Combining with Eq. [2],

n_ (B-B)
2Lm

drg
dr

o

O



Both sides of this equation are positive; therefore we can take the nth root of both sides:

< Lty I/n ;l/n
2Lm ;

g¥z
dr

(3]

Now for the final time we use the definition of absolute value. Since (dv,/dr) <0 in this
case, (dv,/dr) =- | dvz/dr|, and

% = (PO_PLJI/H rl/ﬂ

= 6
dr 2Lm [e]

If one were less careful about handling the absolute values in this derivation, one
would end up with the wrong sign upon arriving at Eq. [6]. Integrating Eq. [6] gives

Lo (BB MM L o iy
Vet ( I J [+(m)] T i 71
with C; a constant of integration. The final boundary condition is
v, =0 atr=R [8]

which gives, after some algebraic manipulation,

g P -p \l/n pgU=am 1_(L)u+<1/»n i
= 2Lm [1+(1/n)] R s

Note that if n = 1 and m = y, this is the same as BSL Eq. 2.3-18 for a Newtonian
fluid.

R
Q= [2mv.dr [10]
0
P-P\1lmn R[l+(l/n)] R = [1+(1/n)]
R e ITal e
Q ( 2Lm ] [+ (/)] oj'( (R) o L
A 1/n [1+(1/n)] 2T T T
5L g B PL) R R[1+(1/n)] [12]
2Lm L+W/m)]\ 2B+A/n)]
B=p 1/n R[3+(1/n)] 5 REUm [ p =P 1/n
Q —“( 2Lm ) B+1/m] — oy [3+(1/n)]( L ] Wil

Note that if n = 1 and m = p, this is the same as BSL Eq. 2.3-21 for a Newtonian fluid.
Note that while Q ~ AP/L for a Newtonian fluid, Q ~ (AP/L)U 1 for a power-law fluid.




d. Definition of effective viscosity for tube flow

The "effective viscosity" of a non-New

tonian fluid in tube flow is the viscosity

of a hypothetical Newtonian fluid that has the same (¥
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flow rates - on attached page
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3. rectangular slit
a. Newtonian fluid - done on homework; BSL p. 68 ©% BSLK 9'7‘

i. a mote on boundary conditions

In the homework, we solved for vz(x) using the BC (1) vz=0atx=B and (2) vz =
0 at x = -B. If one were clever, one could notice that the symmetry of the problem about x
=0 implies a different boundary condition: (3) Txz=02atx=0. (The justification is as
follows: Since the problem is symmeiric about x = 0, how can there by any momentum
transport across the plans of symmetry? Therefore Tx, must be zero at this plane, at x=0.)
For the Newtonian flow, then one could have solved for vz(x) for x 2 0 using BC (1) and
(3), and used symmetry to argue that, for x <0, vz(x) = v,(-x). For the Newtonian flow
this approach is not really necessary, but it greatly simplifies the solution for Bingham
plastics and power-law fluids. The reason is that in a slit Tz, changes sign at x =0, and for
both Bingham and power-law fluids, the equations for Tx; differ for Tz, < 0 and Tz, > 0.
Therefore we use BC (1) and (3) below and solve for x = 0 only.

b. Bingham plastic
Since the geometry and momentum balancs are the same is in the homework

solution for Newtonian flow, we can jump directly to "Eq. II" on the homework solution
set:

PP
=T 5 4 [1]
We limit our consideration to 0 < x £ B and use BC (3): Tz =0 atx =0. This implies
C;=0
PoP

At this point it pays to sketch Tz, and the expected v profile.

0.x %X B 0 x

24
©

Xo =g/ (APIL)

0000500500980

Ntg=APB/L Vz‘ V<

We define %, is the location where Tzz = T. Thatis,



PRk e .
Xo (Q%_Q) . 31

For X < X, bz < Tp and therefore dvz/dx =0, according to the Bingham plastic equation.
For x 2 Xg,

‘sz‘-;&—fg =-;_L0%Y£z+ To forx2xp . (4]
Rearranging and integrating gives
2 -~
vz>=_£.&fﬁ§2_+—‘ﬂx+c1 forx =%, . {51
KoL Ho
BC (1), vz =0 at x =B, implies
2
G = PoPL ]_32__ I [6]
Mo L Ho
(PoP1) B x¥) _ %B/ x
vy = 1-(x5 - i-% forx2 7
i 2po L ( (B)) u.o( B) = o

For x < Xo, Vz is given by Eq. [z_l with X =X

2 5 -
S R
vz S L B = B orx<Xp. gl

Q for the whole slit is twice the flow through the half defined by x 2 0:

B
Q=W2gvz(x)dx 2 91

Evaluating the equation for Q is easiest if one uses the trick in BSL Example 2.3-2 and
integrates by parts. Theresultis c

3
Q =%; W@ePLB (4 -32 o)y !27 = fortg =7 [10]
o L B g
Q=0 forigs o 1]

with

R @%’3’2 B. [12]




28.4-2 cend
(\?,SLK 2Bz (o onp. T

(RSt 23417 and ) ¢
Note the similarity in the form of Egs. [7], [8], and [10] to BSL Egs. 2.3-25, 26 and 30, +—be
Note also that all of these equation revert to the Newtonian equations if 7, =0. In Eq.
[10], the first part of the equation matches the Newtonian equation (with Lo substituted for
1) while the bracketed term reduces Q below the value for 2 Newtonian fluid.

N

c. power-law fiuid

The derivation of vy(x) for a power-law fluid in a slit is given as a homework
assignment. The final result is

P e pliHiml [1+(1/))
vie (&th)) T (1 : (%) ) forx > 0. [13]
The total flow rate is derived by intsgrating vz over x:
B
Q=W2 g’vz(x) dx [14]

[15]

Q= @n‘z f;) ((PO-PHI;) 1132%1)1/11 ‘

Note that for flow of a power-law fluid through 2 slit, as for power-law flow through a
tube, Q ~ AP /B, Note also that Eq. [15] reveris to the Newtonian formulaifn=1 and m
= u_

4. annulus
2. Newtonian fluid - BSL sect. 24 (RsL ' 2. <Y

Notes: -
o the basic geometry (ie., cylindrical) and the momentum balance are same as for flow
through circular tube
o BCdiffer:
- vz=0atr=R
- vz=0atr=xR
(¢ =0 is not within system; therefore can't apply BC that trz is finite at r = 0)
o BSL defines z pointing up this time, unlike sect. 2.3 - alters definition of P

The math gets hairy. Don't let the math distract you from the following:

2,

e

)

%



An alternate derivation for v,(r): ,
The derivation of v,(r) for Newtonian flow in an annulus in BSL section 2.4 makes use of a clever
change of variable in equation 2.4-3. Most students (and probably most professors) would not think of
making this change. It is not necessary for solving this problem. You should be able to solve this
problem by the straight-ahead method illustrated here. The equation numbers here, after 2.4-2, have no
particular relation to the equation numbers in section 2.4.

Start with equation 2.4-2:

T i por L 24-2)
5 20 r
Equate T, from Newton's law of viscosity with 7., from the momentum balance:
sl e oy (2.4-32)
T et | e e 4-3a
7 g =
L (BB ] G Q.4-42)
dr 2uL r
) 7
v, =-— Hh '——an r+GC, (2.4-52)
5 RS O 1)
B.C: v;=0atr=R (2.4-6a)
b= 2
0=-— PO—P—L R——QIDR-G-C7 (2.4-7a)
i :
C, = h-F R_+Q1HR (2.4-82)
1 R R
inserting this into Eq. 2.4-7a gives
el dp= R Y (R
»Z_[ z,uLL]Til R) J 7 lnk - (2.4-92)
B.C: v,=0atr=xR (2.4-10a)
_(B=F\R|; (#RY]| Gy R
0—[ %,uL‘] > (l [T] }*,—u‘l“@] G
an(lj = — ..P_O—'_P'- &(l =) K-z) (2.4_12@
i U’ 2UL )2 X
D 2
CI - ;ll } Po PI_)_R;_( _K.?.) (24-133)

ln( 3 )\ 2uL

K
Plug this expression for C; into Eq. 2.4-9a:

_(BeBRY fe¥Y | B (PP ARE A TfR
v:—[ % 7 ] > [1 (FJ] m[%T}T(I K‘)plnk7] (2.4-142)

Group terms together with common factor:



y, =[PZZ’L]Rz[l_(%)zJ_{PZ;fLJRZ1n($) n[llJ(l—Kz) 2.4-158)

v, =( &Z;ZL,)RZ 1_[%)'_ lsh ln[EJ (2.4-172)

This is Eq. 2.4-14 of BSL.
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adjacent flow of immiscible fluids - BSL sect. 2.5
aler BSLK Seck 2 ¢

Important points in derivation:
+ perform a separate momentum balance on each fluid I and II
+ need 2 B.C. on each fluid - total of 4
- vz=0atx=b
- vz=0atx=-b
- vhA=vitlatx=0
- Txd=TxMatx=0
+  Note general form of solution; don't sweat the math details

« Application: "coupling" of flow of wetting and non-wetting fluid in pores,
and resulting cross-terms in relative-permeability functions
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i. An aside: Definition of A9

A? is always (pg - pL) + p g (A vertical position)
A? =(pg - pL) + p g [(vertical position)g - (vertical position)y ]

If z axis is defined as pointing down, as in BSL sect. 2.3, then
P=p-pgz
A? = (po-pL) - P & (z0-2L)
=(po-pL)+pgL )
(same formula applies to Ex. 2.3-2 (p. 48) because z points down there, too)

If z points up, as in BSL sect. 2.4, then

P=p+pgz
A? =(pg - pL) + p g [(vertical position)g - (vertical position)y ]
=(po-pL)-pgL

Better than memorizing either formula is to realize the physical significance of the hydrostatic forces;
they should add to AP if flow is downwards and reduce AP if flow is upwards, against gravity.
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physical significance: either 5.\9
° momentum in positive z direction is carried in direction of decreasing x or r (both cases here), or

° momentum in the negative z direction is carried in the direction of increasing X or r
- .. how to handle this mathematically ... ? Which terms represent transport "into" and "out of" the
control volume?

iii. An aside: What if fluxes or velocities are negative?

(For instance, what if wall is moving in negative z direction; or positive z momentum is transported radially

inward (in direction of decreasing r, i.e., Tz <0)) See Qsik PUS

middle of ! rjc

Principles:

1. Coordinate axes define directions of positive velocity, fluxes.

2. For purposes deriving shell balance, assume all fluxes and velocities are in positive
directions, as defined by coordinate axes. (el v K3 Qst 2
sp-s\ BSLK
3. Apply boundary conditions consistently with physical constraints and coordinate-axis
directions.

4. Negative velocities or fluxes (e.g., vz < 0, Try < 0) will result naturally from application
of boundary conditions.

(Don't try to out-smart the process.)

b. non-Newtonian fluid flow in an annulus - on next page
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5. Correctly including hydrostatic pressure in flow equations

Consider the following example

K— ? pewn ‘\‘0
a‘\'\M 05?“?&

H
lorq @
+&“K ~a\
H k ! (_VL;'U\ \1 3
o=
1 (no ehange = e\ew&‘"\ou\ n.!oms prP‘?\ e DWM"DLQ.-@
v L — _—— P
What is A®Pacross the pipe? .y
Arr{‘ r(;‘;~ /-FL S Cvetm (—’C‘&H ] '\f‘f-t\'f',l ¢ (1 j;()“/-'- "T\—
er: = (c; H
b ) S
Consider the another example

o +bop of
N afe &
3;3‘1?& pressore P

What is A%Pacross the pipe?

P TR 0 vpalls o
OHP=T (C2 ¥PGUD T v ¢ FHr = ((—“_()1\ T Fu-H2)

g - - \
LF (20 + PG L 1)

(

Moral: include hydrostatic contributions to inlet and outlet
pressures in AP



6. equation of motion and Navier-Stokes equation - BSL sect. 3.2
Not required for this course, but used extensively in more-advanced
courses in fluid mechanics

7. recap of examples

fluid
flow example Newtonian Bingham plastic power-law
(Paca\led
Pavres)
foding T |
el IRPL] 22\ HomeusoAie
Loan { o 5
Cicadec S e e e
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Lo \\DSL\ ‘)\ \\w\ (‘L((i:cs
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(boxed cases are those for which final equations are important)

all variations involve changing only:
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L. E. "Creeping flow" around sphere
1. Newtonian fluid - BSL Sect. 2.6 (&4L i 2.7)

(students not responsible for derivation, but for final equation)
1 LLeils
applications of Eq. 2.6-86: (Z5Llk ©q 231
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2. suspension of particles in Bingham plastic

students not responsible for derivation, but for final equation:

Particle is completely suspended, as in a solid, if

s
T27; Rips-plg

applications to suspension of:
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ITI. F. Assumptions Behind Derivations in BSL Ch. 2

ignore entrance and exit effects

o 06 06 0 0 o

fluid = continuum

"slow," rectilinear flow (except flow around sphere)
incompressible (p constant), Newtonian (i constant) fluid
steady state (v(x) independent of't)

no slip at walls (v = wall velocity at wall; "BC type 1")

Assumptions break down when flow too fast: "turbulence"
Quantify conditions for breakdown in "Reynolds number:"

R (Iength)(velocity)(density)  inertial effects pV2

viscosity " viscous effects ™ (uV/L)
Def. Trans. to
Type of Flow of Re turbulence Reference
; o b YVp o
Horizontal, infinite — 3000 Schlichting, Boundary Layer
y7,
plates (BSL Fig. Theory, 1979, p. 590
1.1-1)
Lot 48<vz>p =
Falling Film T 20 BSL,p.46 RSLK p- KX
A
Slit et el S ) White, Fluid Mechanics
)7,
1979, p. 433
; D<v,>p 2 P sy
Circular Tube z 2100 BSL,p.52 RSLK
M A
b vz?
- ¥ 2 e .
Annulus 2 "f 2000 BSL,p.56 R3UC p&o
»r

DV
Flow Around Sphere " 2P2 g1+

Ha

78
BSL,pp.61. ®SLK p &%

* computed Vy is within about 10% of true value for Re < 1

These vqlues apply only to Newtonian Fluids!
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III. G. Analogies to electrical conduction
1. Linear relationship between Q and AP/L

Cet@an o>
In electrical conduction, 7T is proportional to volkagqe v leenw
.V\'/
In laminar flow of Newtonian fluids, (1 is proportional to & F .
This linear relationship between driving force and transport rate does not apply to
non-Newtonian fluids, nor to turbulent flow of Newtonian fluids.
2. Multiple elements in flow path
In both electrical conduction and flow of fluids, the transport may be more
complicated than just through one channel. In electrical conduction,
if the current passes
through more than one resistor 1~ seoes , then

- <
- VO D& A2

el fesSidtus
Onz acld s vollag

J;’ o\ 4‘2‘€Ao_‘re S 7 (;(‘, 'J(e,,"

Che Cdliza | i
e \/‘“.'u:f-l_acg

L O
ol Trerence

In electrical conduction, if two resistors are .~ (Fe- il , then
Ehe volboge 1S e f’)(lﬂ_m_r_‘)_ T \O’Z\;{’\

one actds cogtert abhe © (R

e cet
She btdryal ecucre

A

r

In flow of fluids through multiple channels ~ &< (€=

CQ for lw) S 8eeme Yor all © helareld

One aclads a‘p,

In flow of fluids through multiple channels . parallel

s . > |
HP D Same Ror ol

SNE AA els

>
One aclds { Loy

(Afes K's.

This analysis of flow through multiple channels applies to laminar or turbulent flow,
in tubes, slits, annuli, or porous media, and to Newtonian and non-Newtonian fluids.



