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“* X". Macroscopic Mechanical Energy Balance

" Flow in industrial situations involves not only drag on pipes, but the work of pumps to make fluids flow,
turbines to extract work from flow, and the effects of fittings and pipe elbows on drag, all with pressure
differences and changes of elevation along the system. There can also be acceleration of the system, but
we restrict ourselves to cases of steady state. BSL Fig. 7.0-1 shows a schematic of what may be
involved. Note that subscript 1 refers to the entrance to the system and subscript 2 to the exit.

The governing equation in this case is the macroscopic mechanical energy balance, the subject of BSL
Sections 7.4 and 7.5. The development begins with Eq. 7.4-1. This can be rewritten as Eq. 7.4-2. The
left side of this equation is the accumulation term (unsteady state). If we assume steady state, the
equation becomes Eq. 7.4-5: this equation is written in terms of extensive quantities - all the terms have
units of energy/time. If one divides by mass flow rate w = Qp and uses an approximate relation for the
compression term, one gets Eq. 7.4-7, which is the equation we will use. Note that the terms here are in
units of energy/mass.

If we assume turbulent flow, so that v is approximately uniform across the pipe, the kinetic energy term is
simplified, and we get Eq. 7.5~W§[‘he terms in the equation are still in units of energy/mass.
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Note if the fluid is incompressible, the pressure term is simplified (Eg=2z=.
-
Note that if the inlet pressure is greater than the outlet pressure, this term is less than zero. This is the

opposite of the AP term we used before, which is positive if the inlet pressure is greater than outlet.
Note that here h, > h; if the outlet is higher than the inlet - in effect, the z axis points up.

Note also that the work term Wm >0 if one (QukS toorie .a
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To get total work in or out, multiply w.. by mass flow rate w (which is equal going in or out at steady state)
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Fv in Eq. 7.4-7 represents the dissipation in the system. It comprises two terms (Eq. 7.5-10):
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Calculation of friction factors in pipes f was the subject of section X of our lecture notes (ch. 6 of BSL)

dissipation in flow through fittings, valves, etc.
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The values for friction-loss factors for various cases are given in Table 7.5-1. Note the definition of B in
the footnote of this table. Note also that v in this term is the average velocity downstream of the fitting.
Putting all this together, we get =
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Example 7.5-1 uses the macroscopic mechanical energy balance to solve for the requirement for a pump.
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The Bernoulli Equation b <G sl ® g5 s LK

VA% BSLIC) (239 om p-87 BSLK)
On p. 204 BSchwéq. 7.4-7 to the Bernoulli equation, Eq."3.5-12 on p. 86. Note the important
comment on . the Bernoulli equation applies where "viscosity [i.e., drag] palys a rather minor role."
The mechanical energy balance in Eq. 7.4-10 includes two important additions: \-;\%\
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Which equation to use, 6.1-4 (momentum balance in a tube) or 7.5- {|
1 (macroscopic mechanical energy balance)? (RS Li)

Eq. 6.1-4 is based on a momentum balance ©a = Single uloe

involving PP ress(e, giavity drag on toalls
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(see derivation of momentum balance, p. __ in lecture notes)

In this equation you have to combine

i\
Eq, 7.5- B includes other factors as well:
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(see Fig. 7.0-1)

If those factors are involved in the equation, you must use the macroscopic mechanical energy balance;
Eq. 6.1-4 simply does not apply. because it leaves out factors in the given problem.
Nl e

Eq. 7.5-2 automatically combines gravfty'and pressure difference as long as one evaluates & and p correctly
at the two surfaces, "1" and "2".

£\
In fact, because it is more general, one can always use Eq. 7.5-B, even if those extra
factors are not involved. Thus, if it is simpler for you, simply apply Eq. 7.5-8 to all
situations involving flow through pipes or piping systems. 1



How to account for fluid velocity exiting a pipe? Is it a kinetic-energy factor or a
sudden expansion of diameter (i.e., velocity =0)?
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Does the Macroscopic Mechanical Energy Balance assume turbulent flow? Can we
use it if flow is laminar in the pipes?
1k cSoes na: assume tudonlent Plow in Pipes.
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The Macroscopic Mechanical Energy Balance assumes that the pipes, valves,
fittings, etc., all apply to a single flow path. The change in height, pressure
difference, and work input together must accommodate the SUM of all the
resistances provided by the pipes, valves, fittings, loss of mechanical energy, etc.

1 L P2 i 5 L
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Py

sum over all sum over all
sect_ions of fittings, valves,
straight conduits meters, etc.

(7.5-12)

This is similar to what we learn in physics about resistors in series:

For fluid mechanics, for flow components in series,

What if there were alternate paths the fluid could take to the same destination?
P.
////// cl

_,_f ”gKN Iw= PQ.

For electrical circuits in parallel

Similarly, for the flow problem

We will come back to this analogy when we study heat transfer.
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3. A drainage system is designed to carry rainwater off the top of a hill to a river below.

The pipe is 0.2 m in diameter, and its "height of protuberances” 0.0008 m. The

properties of water are given in problem 2. There are two sharp (not rounded) 90°

elbows and in the pipe plus a sharp (not rounded) constriction at the entrance, as

shown below. The pipe discharges into the air above the river. The pipe comprises

10, 15 and 20-m segments (going down the slope, sideways, and down the slope), but

because it is set on the side of the hill the change in elevation along the pipe is only

23 m. At the top of the pipe is a reservoir of water of depth 2 m. An engineer wants

to know the water velocity through the pipe.

a. Write out the equation that must be satisfied by the velocity in the pipe. Plugin
all the numbers you can into this equation.

b. Solve this equation for velocity in the pipe. Start by assuming that the flow is
highly turbulent (very large Re).

(35 points)

view from front view from side

5m

20 m

. Rocky proposes that one could eliminate the need for locks in canals by dissolving

material in the water in the canal to turn it into a Bingham plastic. Suppose the canal
were 1 m deep, with side walls very far (infinitely far) apart. The bottom surface of
the canal, of course, does not move. Suppose the density of the fluid is 1000 k°/m
Suppose the canal tilts at an angle 89.8° to the vertical (i.e., it is close to horizontal).
What yield stress T, would be required to prevent flow of the Bingham plastic

downward through the canal?
(10 points)

properties of water
w=0.001Pas p = 1000 kg/m’
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