
NAME: STUDENT # 
AESB2320, 2016-17 

Part 2 Examination -19 April, 2017 

Turn in tliis exam witli your answer sheet. 
Write your solutions on your answer sheet, not here. In all cases show your work. 

To avoid any possible confusion, 
state the equation numbers and figure numbers of equations and figures you use 

along with the text you are using (BSL2 or BSLK). 
Beware of unnecessary information in the problem statement. 

1. A cylindrical wire of radius R, like that in BSL 1"' edition (BSLl) section 9.2, is 
heated by generation, but in this case the generation rate varies with radial position: 

Se = A r ^ 
where r is radial position and A and C are constants. At the outer radius, there is 
convective heat transfer with a surrounding fluid at temperature To, with heat-transfer 
coefficient h. What is the last equation in the derivation of BSLl Section 9.2 that can 
be applied directly to this problem? Write that equation {on your answer sheet, not 
here) as 

B S L l Eq. 9.2-_ 

The relevant pages of BSLl are appended to the end of this exam. 
(10 points) 

T = 200°C I 
at t = 0 I 

A cyhnder, 5 cm in diameter and 20 cm long, is initially at a 
uniform temperature of 200°C. It has properties given 
below. It is allowed to cool, surrounded by air at 20°C. 
Both flat surfaces are perfectly insulated. The heat-transfer surrounded by 
coefficient at the cyhnder surface is h = 50 W/(m^K). For air at 20°C 
simplicity, for parts (a) and (b), assume that the cylinder is 
at a uniform temperature at all times as it cools. 
a. Derive a formula for the heat flux (heat transfer per unit area) from the cylinder to 

the surrounding air as a function of time, with properties plugged in. 
b. Derive a formula for the temperature of the cylinder as a function of time, with 

numerical values of properties plugged in. 
c. In reality, of course, the assumption that the cylinder is at an absolutely uniform 

temperature as it cools is an approximation; there is a small temperature gradient 
(dqr/dr) within the cylinder. There is concern that i f the temperature gradient in 
the cylinder near its surface is too great, the cylinder may crack. When would the 
temperature gradient at the cylinder surface be the greatest? Calculate the 
temperature gradient at the surface at this time as a function of the parameters of 
this problem. For the purposes of this part, assume that your results for parts (a) 
and (b) are correct; you don't need to recompute those answers. (If you don't get 
this part, don't spend too long on it. Most of the credit is for parts (a) and (b).) 

Properties of solid 
k = 35 W/(m K) Cp = 130 J/(kg K) p = 11,000 kg/m^ 

(40 points) 



Rocky wants to measure the heat-transfer coefficient for convective heat transfer 
between a cold metal sphere and surrounding water, by measuring the temperature of 
the sphere. Of course therefore he wants convective heat transfer to the surface to 
control the heat-transfer process. He has a choice between two metals for the sphere, 
A and B, with properties listed below. Does it matter which metal he chooses? If so, 
which metal should he choose? Briefly justify your answer. 

(15 points) 

C p = 129.9 J/(kgK) 

Cp = 126 J/(kg K) 

Properties of metal A 
k = 293 W/(m K) 

Properties of metal B 
k = 26 W/(m K) 

p = 19,320 kg/m^ 

p = 11300 k g W 

perfectly Insulatetd 

20 cm 

4. A rectangular soUd is 20 cm x 20 cm x 10 cm, is 
initially at 0°C. One side is perfectly insulated, 
as shown. Starting at time t = 0, the five other 
surfaces are changed to 100°C and maintained at 
that temperature. 
a. What is the temperature at a location in the 

middle of the perfectly insulated side (shown 
as black dot in figure) after 5 min.? 

b. What is the temperature at that same location after 8 min.? 
(25 points) 

Properties of solid 
p = 7820 kg/m? Cp = 461 J/(kg K) k = 23 W/(m K) 

5. Based on your answer to problem 4, answer the following question: Suppose a solid 
of that same shape and properties were initially at 0°C. Starting at time t = 0 the five 
non-insulated surfaces are changed to, and maintained at, 100°C. Three minutes later 
those surfaces are changed back to 0°C and maintained at that temperature. What is 
the temperature at the location indicated, 5 minutes after the second change, i.e. 8 
minutes after the first temperature change? 

To answer this question, and help me with grading, write out a formula with all 
the numbers plugged in, and then compute the final answer from this formula. If you 
weren't able to solve problem 4, just state clearly what answers you are assuming for 
paits 4(a) and 4(b) and state your answer in terms of those numbers. 
(10 points) 

Note on problem 2: Some students were confused by the meaning of gradient in part (c); gradient 
means derivative in space (dq/dr), not in time. The problem imphes this by stating that the 
gradient is nonzero because temperature is not absolutely uniform. I've added that clarification 
here, but it was not there on the day of the exam. 



dependence of either the tod or electricd condncth% ^e co». 
ctepencuace ox niaintained at temperature 1We now 

:ï:rtiÏ.:^^ern;L the radial temperature d » u t i o n within the 

" e l n e r g y balance we select as the systern a cylindrical sl^U of thi^= 

nefs Ar arad leZgth L. (See Fig. 9.2-1.) The vanous contnbutions .o die 

energy balance are 

rate of thermal 
energy in across (27r?-L)(g,|,) ^ •̂'̂ '̂ ^ • 
cylindrical surface 
at r 

rate of thermal 
energy out across (27r(r -I- ^r)L)iqX+A,) (̂ •̂ "3) 
cylindrical surface 
at r + Ar 

rate of production (9 2_4) 
of thermal energy by (2̂ ?- IXrhp, 
electrical dissipation 

" wfnow substitute these three expressions into Eq. 9.1-1. Division by 
l^T and taking the limit as Ar goes to zero gives 

j j j ^ . (rg,.)|.+A. - (>-gr)lr\ ^ ŝ ,. (9.2-5) 
r̂_:.o Ar ' 

The expression withha braces is just the first derivative of r?,. with respect to r, 
so that Eq. 9.2-5 becomes ^ (9 2-6) 

This is a first^order ordinary differential equation for the energy fiuK, which 

may be integrated to give ^ ĝ .̂ ^ ^ (9.2-7) 

The integration constant must be zero because of the boundary condition 

g C 1: at r = 0 is not infinite (9-2 8) 

Hence the final expression for the energyflux distribution is 

(9.2-9) 

This states that the heat flux increases linearly with r. 



H e a t CoEidMcSkn-i Vfitï-s an i iec ts- iea l Hea-i; Source 

We now substitute Fourier's lav/ (see Eq. 8.1-2) in the form f,. = -k{clTjdr) 
into Eq. 9.2-9 to obtain 

_j^dT^Sj;_ (9.2-10) 
2 

-> 

Heat In by 
conduction 

Heal out 
by con­
duction 

Uniform heat 
.production 
by electncal 
dissipation • 

Mr,. • I - A r 

Fig. f .2=L Cylindrical shell over which energy balance Is made In order to get tempera­

ture distribution in an electrically heated wire. 

When k is assumed to be constant, this first-order differential equation may 
be integrated to give 

4/c 

The integration constant is determined from 

B.C. 2: at r = R T = To 
Hence C. is found to be To + (S.R^I^k) and Eq. 9.2-11 becomes 

4k 

(9.2-11) 

(9.2-12) 

(9.2-13) 


