NAME: STUDENT #

1.

AESB2320, 2016-17
Part 2 Examination - 19 April, 2017

Turn in this exam with your answer sheet.
Write your solutions on your answer sheet, not here. In all cases show your work.
To avoid any possible confusion,
state the equation numbers and figure numbers of equations and figures you use
along with the text you are using (BSL2 or BSLK).
Beware of unnecessary information in the problem statement.

A cylindrical wire of radius R, like that in BSL 1% edition (BSL1) section 9.2, is
heated by generation, but in this case the generation rate varies with radial position:
Se=A1"
where r is radial position and A and C are constants. At the outer radius, there is
convective heat transfer with a surrounding fluid at temperature T,, with heat-transfer
coefficient h. What is the [ast equation in the derivation of BSL1 Section 9.2 that can
be applied directly to this problem? Write that equation (on your answer sheet, not
here) as

BSL1Eq.9.2-__

The relevant pages of BSL1 are appended to the end of this exam.
(10 points)

A cylinder, 5 cm in diameter and 20 cm long, is initially at a

. o N T=200°C
uniform temperature of 200°C. It has properties given (=0
below. It is allowed to cool, surrounded by air at 20°C. Tz
Both flat surfaces are perfectly insulated. The heat-transfer surrounded by
coefficient at the cylinder surface is h = 50 W/(mzK). For air at 20°C

simplicity, for parts (a) and (b), assume that the cylinder is

at a uniform temperature at all times as it cools.

a. Derive a formula for the heat flux (heat transfer per unit area) from the cylinder to
the surrounding air as a function of time, with properties plugged in.

b. Derive a formula for the temperature of the cylinder as a function of time, with
numerical values of properties plugged in.

c. Inreality, of course, the assumption that the cylinder is at an absolutely uniform
temperature as it cools is an approximation; there is a small temperature gradient
(dq,/dr) within the cylinder. There is concern that if the temperature gradient in
the cylinder near its surface is too great, the cylinder may crack. When would the
temperature gradient at the cylinder surface be the greatest? Calculate the
temperature gradient at the surface at this time as a function of the parameters of
this problem. For the purposes of this part, assume that your results for parts (a)
and (b) are correct; you don't need to recompute those answers. (If you don't get
this part, don't spend too long on it. Most of the credit is for parts (a) and (b).)

Properties of solid
k =35 W/(m K) Cp,=1301/(kg K) p = 11,000 kg/m’
(40 points)




3. Rocky wants to measure the heat-transfer coefficient for convective heat transfer
between a cold metal sphere and surrounding water, by measuring the temperature of
the sphere. Of course therefore he wants convective heat transfer to the surface to
control the heat-transfer process. He has a choice between two metals for the sphere,
A and B, with properties listed below. Does it matter which metal he chooses? If so,
which metal should he choose? Briefly justify your answer.

Properties of metal A
cp=129.9 J/(kg K) k=293 W/(m K) p = 19,320 kg/m®
Properties of metal B
cp = 126 J/(kg K) k =26 W/(m K) p = 11300 kg/m’

(15 points)
4. A rectangular solid is 20 cm x 20 cm x 10 cm, is perfectly 'SUIatEd
initially at 0°C. One side is perfectly insulated,
as shown. Starting at time t = 0, the five other
surfaces are changed to 100°C and maintained at
that temperature.
a. What is the temperature at a location in the
middle of the perfectly insulated side (shown < > "o
as black dot in figure) after 5 min.? 20 em

b. What is the temperature at that same location after 8 min.?
(25 points)

Properties of solid
p =17820 kg/m3 ¢, =461 J/(kg K) k =23 W/(m K)

5. Based on your answer to problem 4, answer the following question: Suppose a solid
of that same shape and properties were initially at 0°C. Starting at time t = O the five
non-insulated surfaces are changed to, and maintained at, 100°C. Three minutes later
those surfaces are changed back to 0°C and maintained at that temperature. What is
the temperature at the location indicated, 5 minutes after the second change, i.e. 8
minutes after the first temperature change?

To answer this question, and help me with grading, write out a formula with all
the numbers plugged in, and then compute the final answer from this formula. If you
weren't able to solve problem 4, just state clearly what answers you are assuming for

parts 4(a) and 4(b) and state your answer in terms of those numbers.
(10 points)

Note on problem 2: Some students were confused by the meaning of gradient in part (c); gradient
means derivative in space (dq,/dr), not in time. The problem implies this by stating that the
gradient is nonzero because temperature is not absolutely uniform. I've added that clarification
here, but it was not there on the day of the exam.
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dependence of either the thermal or clectrical conductivity need be con-
sidered. The surface of the wire is naintained at temperainre To. We now
show how oxe can determine the radial temperature distribution within the
heated wire.

For the energy balance we select as the system a cylindzical shell of thicke-
ness Ar and length L. (See Fig. 9.2-1.) The various contributions to the
energy balance are

rate of thermal

energy in across _
cylmdrical surface (2mrL)ard.) 9.2-2) '

at v
rate of thermal

energy ouf-across A B
cylindrical sutface (el -+ Ao IL)(Grlr ) (0.2-3)
at r 4 Ar

rate of production

of thermal energy by (2mr ArL)S, (9.2-4)

electrical dissipation
The notation g, means “flux of energy in the r-direction,” and |T means
“ovaluated at 7.7 Note that we take “in” and “out” to be in the positive

p-direction.
We now substitute these three expressions into Ed. 9.1-1. Division by
9ml, Ar and taking the limit as Ar goes to zero gives

{lin’l’(rq"‘)lﬂﬁm - (T‘QT)Ir} = S,r (9.2-5)
Ar—0 Ar

The expression within braces is just the first derivative of rq, with respect to 1,
so that Bq. 9.2-5 becomes

— (q,) = S¢r 9.2-6)
dr v

This is a first-order ordinary differential equation for the energy flux, which
may be integrated to give
4 & & _ S o
=2 4 3
2 T
The integration constant ¢, must be zero because of the boundary condition

4, ©.2-7)

B.C. 1 at #=0 g, isnot infinite (9.2-8)

Hence the final expression for the energy flux distribution is

(9.2-9)

This states that the heat flux increases linearly withr.




oot Conduction with an Blecivical Heot Soeuces s

We now substitite Fourier's law (see Bq, 8.1-2) in the form g, = —k(dT]dr)
into Bq. 9.2-9 to obiain T s

R N 9.2-10

dr 2 ‘ ( )
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Fig. 9.2-1. Cylindrical shell over which energy balance is made in order to get tempera=-
ture distribution in an electrically heated wire,

When % is assumed to be constant, this first-order differential equation may
be integrated to give '

S, e
Te=——"=4C 9.2-11
4k ? ( )
The integration constant C; is determined from
B.C. 2: at r=R T="1T, (9.2-12)

Hence C, is found to be T, + (S,R%[4k) and Eq. 9.2-11 becomes

T T, = SBRT' —~ (ﬁﬂ (9.2-13)

4k R




