DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday July 4 2013, 18:30-21:30

1. [a] The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h}, \tag{1}
\end{equation*}
$$

where z_{n+1} is the result of one Forward Euler step starting from y_{n}. We determine y_{n+1} by the use of a Taylor Series around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+O\left(h^{2}\right) . \tag{2}
\end{equation*}
$$

We realize that

$$
\begin{equation*}
y^{\prime}\left(t_{n}\right)=f\left(t_{n}, y_{n}\right) . \tag{3}
\end{equation*}
$$

Hence, this gives

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)+O\left(h^{2}\right) \tag{4}
\end{equation*}
$$

For z_{n+1}, after substituting y_{n} into Forward Euler, one obtains

$$
\begin{equation*}
z_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) . \tag{5}
\end{equation*}
$$

Then, it follows that

$$
\begin{equation*}
y_{n+1}-z_{n+1}=O\left(h^{2}\right), \text { and hence } \tau_{n+1}(h)=\frac{O\left(h^{2}\right)}{h}=O(h) . \tag{6}
\end{equation*}
$$

[b] We use the test-equation $y^{\prime}=\lambda y$, then it follows that

$$
\begin{equation*}
w_{n+1}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n} \tag{7}
\end{equation*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda . \tag{8}
\end{equation*}
$$

[c] Consider $y(t)=-\cos t$, then $y^{\prime}(t)=\sin t$ and $y^{\prime \prime}(t)=\cos t$. Hence

$$
\begin{equation*}
y^{\prime \prime}(t)+y^{\prime}(t)+y(t)=\cos t+\sin t-\cos t=\sin t \tag{9}
\end{equation*}
$$

and hence $y(t)=-\cos t$ is a solution to the differential equation. Further, $y(0)=$ $-\cos 0=-1$ and $y^{\prime}(0)=\sin 0=0$, and hence the initial conditions are also satisfied.
[d] Let $x_{1}=y$ and $x_{2}=y^{\prime}$, then it follows that $y^{\prime \prime}=x_{2}^{\prime}$, and hence we get

$$
\begin{align*}
& x_{2}^{\prime}+x_{2}+x_{1}=\sin (t), \\
& x_{2}=x_{1}^{\prime} \tag{10}
\end{align*}
$$

This expression is written as

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \tag{11}\\
& x_{2}^{\prime}=-x_{1}-x_{2}+\sin (t) .
\end{align*}
$$

Finally, we get the following matrix-form:

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{12}\\
-1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\sin (t)} .
$$

Here, we have $A=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$ and $f=\binom{0}{\sin (t)}$. The initial conditions are given by $\binom{x_{1}(0)}{x_{2}(0)}=\binom{-1}{0}$.
[e] The Forward Euler Method, applied to the system $\underline{x}^{\prime}=A \underline{x}+\underline{f}$, gives at the first step:

$$
\begin{equation*}
\underline{w}_{1}=\underline{w}_{0}+h\left(A \underline{w}_{0}+\underline{f}_{0}\right) . \tag{13}
\end{equation*}
$$

With the initial condition and $h=0.1$, this gives

$$
\underline{w}_{1}=\binom{-1}{0}+\frac{1}{2}\left(\left(\begin{array}{cc}
0 & 1 \tag{14}\\
-1 & -1
\end{array}\right)\binom{-1}{0}+\binom{0}{0}\right)=\binom{-1}{0.5} .
$$

[f] To this extent, we determine the eigenvalues of the matrix A. Subsequently, these eigenvalues are substituted into the amplification factor. The eigenvalues of A are given by $-\frac{1}{2} \pm \frac{1}{2} i \sqrt{3}$. Substitution into the amplification factor gives

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda=1+\frac{h}{2}(-1+i \sqrt{3})=1-\frac{h}{2}+\frac{h \sqrt{3}}{2} i . \tag{15}
\end{equation*}
$$

Herewith, it follows that

$$
\begin{equation*}
|Q(h \lambda)|^{2}=\left(1-\frac{h}{2}\right)^{2}+\frac{3 h^{2}}{4}=1-h+h^{2} \tag{16}
\end{equation*}
$$

Since, for numerical stability, we need $|Q(h \lambda)| \leq 1$, we get

$$
\begin{equation*}
h^{2}-h \leq 0 \Longleftrightarrow h \leq 1 \tag{17}
\end{equation*}
$$

and hence for $0 \leq h \leq 1$, we have numerical stability, so $h \in[0,1]$.
2. (a) The linear Lagrangian interpolatory polynomial, with nodes x_{0} and x_{1}, is given by

$$
\begin{equation*}
p_{1}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} f\left(x_{0}\right)+\frac{x-x_{0}}{x_{1}-x_{0}} f\left(x_{1}\right) . \tag{18}
\end{equation*}
$$

This is evident from application of the given formula.
(b) The quadratic Lagrangian interpolatory polynomial with nodes x_{0}, x_{1} and x_{2} is given by
$p_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)$.
This is also evident from application of the given formula.
(c) To this extent, we compute $p_{1}(0.5)$ and $p_{2}(0.5)$ for both linear and quadratic Lagrangian interpolation as approximations at $x=0.5$. For linear interpolation, we have

$$
\begin{equation*}
p_{1}(0.5)=0.5+\frac{1}{2} \cdot 2=\frac{3}{2}, \tag{20}
\end{equation*}
$$

and for quadratic interpolation, one obtains

$$
\begin{equation*}
p_{2}(0.5)=\frac{(0.5-1)(0.5-2)}{(-1) \cdot(-2)} \cdot 1+\frac{(0.5-0)(0.5-2)}{1 \cdot(-1)} \cdot 2+\frac{(0.5-0)(0.5-1)}{2 \cdot 1} \cdot 4=\frac{11}{8}=1.375 . \tag{21}
\end{equation*}
$$

(d) The method of Newton-Raphson is based on linearization around the iterate p_{n}. This is given by

$$
\begin{equation*}
L(x)=f\left(p_{n}\right)+\left(x-p_{n}\right) f^{\prime}\left(p_{n}\right) \tag{22}
\end{equation*}
$$

Next, we determine p_{n+1} such that $L\left(p_{n+1}\right)=0$, that is

$$
\begin{equation*}
f\left(p_{n}\right)+\left(p_{n+1}-p_{n}\right) f^{\prime}\left(p_{n}\right)=0 \Leftrightarrow p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}, \quad f^{\prime}\left(p_{n}\right) \neq 0 \tag{23}
\end{equation*}
$$

This result can also be proved graphically, see book, chapter 4.
(e) We have $f(x)=x^{2}-2 x-2$, so $f^{\prime}(x)=2 x-2$ and hence

$$
p_{n+1}=p_{n}-\frac{p_{n}^{2}-2 p_{n}-2}{2 p_{n}-2}
$$

With the initial value $p_{0}=2$, this gives

$$
p_{1}=2-\frac{4-4-2}{4-2}=3
$$

(f) We consider a Taylor polynomial around p_{n}, to express p

$$
\begin{equation*}
0=f(p)=f\left(p_{n}\right)+\left(p-p_{n}\right) f^{\prime}\left(p_{n}\right)+\frac{\left(p-p_{n}\right)^{2}}{2} f^{\prime \prime}\left(\xi_{n}\right) \tag{24}
\end{equation*}
$$

for some ξ_{n} between p and p_{n}. Note that this form gives the exact representation. Subsequently, we consider the Newton-Raphson approximation

$$
\begin{equation*}
0=L\left(p_{n+1}\right)=f\left(p_{n}\right)+\left(p_{n+1}-p_{n}\right) f^{\prime}\left(p_{n}\right) . \tag{25}
\end{equation*}
$$

Subtraction of these two above equations gives

$$
\begin{equation*}
p_{n+1}-p=\frac{\left(p_{n}-p\right)^{2}}{2} \frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(p_{n}\right)}, \text { provided that } f^{\prime}\left(p_{n}\right) \neq 0 \tag{26}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|p_{n+1}-p\right|=\frac{\left(p_{n}-p\right)^{2}}{2}\left|\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(p_{n}\right)}\right|, \text { provided that } f^{\prime}\left(p_{n}\right) \neq 0 \tag{27}
\end{equation*}
$$

Using $p_{n} \rightarrow p, \xi_{n} \rightarrow p$ as $n \rightarrow \infty$ and continuity of $f(x)$ up to at least the second derivative, we arrive at $K=\left|\frac{f^{\prime \prime}(p)}{f^{\prime}(p)}\right|$.

