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1.
a The local truncation error is defined as
Tn+1(h) _ Yn+1 ;ZnJrl’ (1)
where z,,.1 is given by
Zn+1 = Yn + h (alf(tm yn) + a2f(tn + h, Yn + hf(tnv yn)) . (2)
A Taylor expansion of f around (t,,y,) yields
of of 5
Ftn+h, yn+hf(tn, yn)) = f(tn,yn)ﬂthg(tmyn)+hf(tn,yn)a—y(tn,yn)+0(h )- (3)
This is substituted into equation (2) to obtain
B of of 3
Zn+l = yn+h alf(tna yn) + a2 f(tn: yn) + ha(tm yn) + hf(tna yn)a_y(tm yn) +O(h )
(4)

A Taylor series for y(x) around ¢, gives for y,1

/ h2 /!
Unsr = Y(tn +h) =y + hy/(tn) + 9" (bn) + O(h*). (5)

From the differential equation we know that:
y/(tn> = f(tn:Yn) (6)

From the Chain Rule of Differentiation, we derive

ny JIn 8 ny Jn 8 ny Jn /
St = df(tdty ) _ f(taty ) f(tayy )y(tn) 7)

after substitution of the differential equation one obtains:

8 ny Jn 8 ny Jn
(1) = 2Lt) DI t) gy, ©)

Equations (5) and (4) are substituted into relation (1) to obtain

rt(h) = Fltn )L — (ar +a2)) + (% T fg—g) (% . ) Loy ()

Hence



(a) ay + ay = 1 implies 7,.1(h) = O(h);
(b) a1 +as =1 and ay = 1/2, that is, a; = ay = 1/2, gives 7,41(h) = O(h?).

The test equation is given by
Y = \y. (10)
Application of the predictor step to the test equation gives

W =Wy, + hAw, = (1 + hA)w,. (11)
The corrector step yields
Wy i1 = Wy + (a1 w, + axA(1 + hN)w,) = (14 (a1 + az)hA + ash® ) w,.  (12)
Hence the amplification factor is given by

Q(h)\) =1 + (a1 + ag)h)\ + a2h2)\2. (13)

Let A < 0 (so A is real), then, for stability, the amplification factor must satisfy
-1 <Q(hN) <1, (14)
from the previous assignment, we have
—1 <1+ (a4 ag)hA +as(hA)? <1 —2 < (ay + ag)h\ + az(hA)? < 0. (15)
First, we consider the left inequality:
az(hA)? + (ay + ag)hA +2 >0 (16)

For hA = 0, the above inequality is satisfied, further the discriminant is given by
(a1 + az)? — 8ay < 0. Here the last inequality follows from the given hypothesis.
Hence the left inequality in relation (15) is always satisfied. Next we consider the
right hand inequality of relation (15)

az(hA\)? + (a; + az)h < 0. (17)

This relation is rearranged into

ag(hA)? < —(ay + az)h, (18)
hence o +a
ashA? < (ay + ag)|hA| < |hA| < 1a 2 ay #0. (19)
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This results into the following condition for stability

h< ai —|—(12’
ag| Al




d The Jacobian, J, is given by

of of
Oy1 Oya

J = (21)
of: 0f:
Oy Oy

Since f1(y1,v2) = —vy1y2 and fa(y1,y2) = y1y2 — Y2, We obtain
Y2 —U
J = . 22
( Y2 Y1 — 1) (22)
Substitution of the initial values y;(0) = 1 and y2(0) = 2, gives
-2 -1
(7 7) -

e The eigenvalues of the Jacobian at y;(0) = y2(0) = 1 are given by A\; o = —1+£4. For
our case, we have

Q(hA) = 14+ hA + 1/2(h))%. (24)
Since our eigenvalues are not real valued, it is required for stability that
QR < 1. (25)

Since the eigenvalues are complex conjugates, we can proceed with one of the eigen-
values, say A = —1 + ¢ with A\ = —2¢ to obtain

Q(hA) =1+ h(—1+1)+ 1/202(—2i) (26)

Substitution of A = 1 shows that Q(hA) = 0. This implies that |Q(hA)] =0 < 1 so
the method is stable.

2. a First, we check the boundary conditions:
-1 1-1 el —1
—= = g 1 == = 1. 2
u(0) e—1 e—1 0, u(l) e—1 (27)
Further, we have
/ ex 2
W(@) = o =(2) (28)
Hence, we immediately see
" !/ ez ez
W) +l(a) =~ (29)
Hence, the solution u(x) = e:__ll satisfies the differential and the boundary

conditions, and therewith u(zx) is the solution to the boundary value problem
(uniqueness can be demonstrated in a straightforward way, but this was not
asked for).



b The domain of computation, being (0, 1), is divided into subintervals with mesh-
points, we set x; = jh, where we use n unknowns, such that =, = (n+1)h = 1.
We are looking for a discretization with an error of second order, O(h?). To this
extent, we use the following central differences approximation at x;:

w(@jp1) — u(zj1)
2h

We note that the above formula can be derived formally by writing the derivative
as

u'(xj) ~ , for j e {1,...,n}. (30)

() = aopu(xj_1) + a1u}5$j) + onu(az:jJrl)7

and solve oy, a; and as from checking the zeroth, first and second order deriva-
tives of u(x). Further, the second order derivative is approximated by

(31)

w(@j1) — 2u(z;) + u(w;-1)
B2

Since we approximate the derivatives at the point z;, we use Taylor Series around

xj, to obtain:

() ~

. (32)

! h2 1/ h3 n h4 nm
w(xji) = u(z; + h) = u(z;) + hu'(x;) + 5u (z;) + Eu (x;) + ﬂu (z;) + O(h5),
/ h2 14 h3 " h4 n 5
u(zj-1) = u(z; —h) = u(x;) — hu'(z;) + Su (z) — 3 (z;) + Y (z) + O(R?),
(33)
This gives
w(Tjp1) — 2u(z;) +ulz,— w(Tjp1) — w(x;— ” ,
— ( J+1> ;§2J> ( J 1) + ( J+1)2h ( J 1) — (:Ej)+u(xj)
(34)

3 h4u//// x;
+%u~'(xj) +O(n) W) 1 O(hd)

o 3 = —u"(x;) +u'(x;) + O(R?).

Hence the error is second order, that is O(h?). Next, we neglect the truncation
error, and set v; := u(x;) to get

C Vi T 200 Vi T
h? 2h

At the boundaries, we see for j = 1 and j = n, upon substituting vy = 0 and

L —0, forje{1,...,n}. (35)

Un—i—l:l:
_v2—201+0+v2—0:

h? 2h

0,

(36)

1—2v,+v,-1 1—v,1
- +

12 on Y
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This is rewritten more neatly by

—Vy + 2’01 (%)

E 2

(37)
20, — Up—1 _ Up1 1 _ 1
h? 2h — h* 2R
¢ Since the exact solution is given by

e’ —1
= 38
u(z) = =, (39)

we immediately see that the exact solution is a real-valued exponential, which
is monotonic by its nature. Since the numerical solution should have the same
characteristics as the exact solution, non—-monotonic (and hence oscillatory)
solutions should be considered as not reflecting the analytic solution.

d i The magnitude of the local truncation error is given by

b—a
2

|d=y/f@Mx— (fla) + FO) | (39)

We use linear interpolation over the interval (a,b), which gives

z—b T —a

)= (F@IZ] + 10772 ) = Jle-alo-D). fora € € (@, )\(a).
(40)

b r — r —a —a
[ (f0 =+ s =) o =" @ fe) . )

this implies that

b _ b
[ #aidn =250 @)+ o) | = | [ e = @) - D @)

1 [° M [*
<5 [ @bl @) <5 [ @ a)b- s

a a (42)
Continuity, and hence boundedness, of the second—order derivatives on the
interval (0,1) implies the existence of an M > 0 such that |f”(x)| < M on
the interval (a, b), since the derivatives of f up to second order are bounded.
Furthermore, we have

/ (¢~ a)(e ~ b)dr = “5 (43)



by which we finally conclude

=

(b - a)S) (44)

[ tays = 20 (@) + 50 < 5

\)

where, as we saw earlier, M is an upper bound for the second order deriva-
tive on the interval (a,b).

ii Application over the gridnodes {z;}, with gridspacing h, gives

0

e =Y [ pwdn = 3 50w + 1)
j=1 7 %j-1 j=1 (45)

:h(M+f(xl)+...+f($n—l)+

2

Application to the current situation, with h = 0.1, n = 3, and the tabular
values, gives

0.3

0 0.09
(z)dz ~ 0.1 (5 +0.01 +0.04 + T) = 0.0095. (46)

0



