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1.

a The local truncation error is defined as

τn+1(h) =
yn+1 − zn+1

h
, (1)

where zn+1 is given by

zn+1 = yn + h (a1f(tn, yn) + a2f(tn + h, yn + hf(tn, yn)) . (2)

A Taylor expansion of f around (tn, yn) yields

f(tn+h, yn+hf(tn, yn)) = f(tn, yn)+h
∂f

∂t
(tn, yn)+hf(tn, yn)

∂f

∂y
(tn, yn)+O(h2). (3)

This is substituted into equation (2) to obtain

zn+1 = yn+h

(
a1f(tn, yn) + a2

[
f(tn, yn) + h

∂f

∂t
(tn, yn) + hf(tn, yn)

∂f

∂y
(tn, yn)

])
+O(h3).

(4)
A Taylor series for y(x) around tn gives for yn+1

yn+1 = y(tn + h) = yn + hy′(tn) +
h2

2
y′′(tn) +O(h3). (5)

From the differential equation we know that:

y′(tn) = f(tn, yn) (6)

From the Chain Rule of Differentiation, we derive

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn) (7)

after substitution of the differential equation one obtains:

y′′(tn) =
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn) (8)

Equations (5) and (4) are substituted into relation (1) to obtain

τn+1(h) = f(tn, yn)(1− (a1 + a2)) + h

(
∂f

∂t
+ f

∂f

∂y

)(
1

2
− a2

)
+O(h2) (9)

Hence
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(a) a1 + a2 = 1 implies τn+1(h) = O(h);

(b) a1 + a2 = 1 and a2 = 1/2, that is, a1 = a2 = 1/2, gives τn+1(h) = O(h2).

b The test equation is given by
y′ = λy. (10)

Application of the predictor step to the test equation gives

w∗n+1 = wn + hλwn = (1 + hλ)wn. (11)

The corrector step yields

wn+1 = wn + h (a1λwn + a2λ(1 + hλ)wn) = (1 + (a1 + a2)hλ+ a2h
2λ2)wn. (12)

Hence the amplification factor is given by

Q(hλ) = 1 + (a1 + a2)hλ+ a2h
2λ2. (13)

c Let λ < 0 (so λ is real), then, for stability, the amplification factor must satisfy

−1 ≤ Q(hλ) ≤ 1, (14)

from the previous assignment, we have

−1 ≤ 1 + (a1 + a2)hλ+ a2(hλ)2 ≤ 1⇔ −2 ≤ (a1 + a2)hλ+ a2(hλ)2 ≤ 0. (15)

First, we consider the left inequality:

a2(hλ)2 + (a1 + a2)hλ+ 2 ≥ 0 (16)

For hλ = 0, the above inequality is satisfied, further the discriminant is given by
(a1 + a2)

2 − 8a2 < 0. Here the last inequality follows from the given hypothesis.
Hence the left inequality in relation (15) is always satisfied. Next we consider the
right hand inequality of relation (15)

a2(hλ)2 + (a1 + a2)hλ ≤ 0. (17)

This relation is rearranged into

a2(hλ)2 ≤ −(a1 + a2)hλ, (18)

hence

a2|hλ|2 ≤ (a1 + a2)|hλ| ⇔ |hλ| ≤
a1 + a2
a2

, a2 6= 0. (19)

This results into the following condition for stability

h ≤ a1 + a2
a2|λ|

, a2 6= 0. (20)
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d The Jacobian, J , is given by

J =


∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

 . (21)

Since f1(y1, y2) = −y1y2 and f2(y1, y2) = y1y2 − y2, we obtain

J =

(
−y2 −y1
y2 y1 − 1

)
. (22)

Substitution of the initial values y1(0) = 1 and y2(0) = 2, gives

J =

(
−2 −1
2 0

)
. (23)

e The eigenvalues of the Jacobian at y1(0) = y2(0) = 1 are given by λ1,2 = −1± i. For
our case, we have

Q(hλ) = 1 + hλ+ 1/2(hλ)2. (24)

Since our eigenvalues are not real valued, it is required for stability that

|Q(hλ)| ≤ 1. (25)

Since the eigenvalues are complex conjugates, we can proceed with one of the eigen-
values, say λ = −1 + i with λ2 = −2i to obtain

Q(hλ) = 1 + h(−1 + i) + 1/2h2(−2i) (26)

Substitution of h = 1 shows that Q(hλ) = 0. This implies that |Q(hλ)| = 0 ≤ 1 so
the method is stable.

2. a First, we check the boundary conditions:

u(0) =
e0 − 1

e− 1
=

1− 1

e− 1
= 0, u(1) =

e1 − 1

e− 1
= 1. (27)

Further, we have

u′(x) =
ex

e− 1
= u′′(x). (28)

Hence, we immediately see

−u′′(x) + u′(x) = − ex

e− 1
+

ex

e− 1
= 0. (29)

Hence, the solution u(x) = ex−1
e−1 satisfies the differential and the boundary

conditions, and therewith u(x) is the solution to the boundary value problem
(uniqueness can be demonstrated in a straightforward way, but this was not
asked for).
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b The domain of computation, being (0, 1), is divided into subintervals with mesh-
points, we set xj = jh, where we use n unknowns, such that xn+1 = (n+1)h = 1.
We are looking for a discretization with an error of second order, O(h2). To this
extent, we use the following central differences approximation at xj:

u′(xj) ≈
u(xj+1)− u(xj−1)

2h
, for j ∈ {1, . . . , n}. (30)

We note that the above formula can be derived formally by writing the derivative
as

u′(xj) =
α0u(xj−1) + α1u(xj) + α2u(xj+1)

h
, (31)

and solve α0, α1 and α2 from checking the zeroth, first and second order deriva-
tives of u(x). Further, the second order derivative is approximated by

u′′(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

h2
. (32)

Since we approximate the derivatives at the point xj, we use Taylor Series around
xj, to obtain:

u(xj+1) = u(xj + h) = u(xj) + hu′(xj) +
h2

2
u′′(xj) +

h3

6
u′′′(xj) +

h4

24
u′′′′(xj) +O(h5),

u(xj−1) = u(xj − h) = u(xj)− hu′(xj) +
h2

2
u′′(xj)−

h3

6
u′′′(xj) +

h4

24
u′′′′(xj) +O(h5),

(33)
This gives

−u(xj+1)− 2u(xj) + u(xj−1)

h2
+
u(xj+1)− u(xj−1)

2h
= −u′′(xj) + u′(xj)

+
h3

3
u′′′(xj) +O(h4)

2h
+

h4u′′′′(xj)

12
+O(h5)

h2
= −u′′(xj) + u′(xj) +O(h2).

(34)

Hence the error is second order, that is O(h2). Next, we neglect the truncation
error, and set vj := u(xj) to get

−vj+1 − 2vj + vj−1
h2

+
vj+1 − vj−1

2h
= 0, for j ∈ {1, . . . , n}. (35)

At the boundaries, we see for j = 1 and j = n, upon substituting v0 = 0 and
vn+1 = 1:

−v2 − 2v1 + 0

h2
+
v2 − 0

2h
= 0,

−1− 2vn + vn−1
h2

+
1− vn−1

2h
= 0.

(36)
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This is rewritten more neatly by

−v2 + 2v1
h2

+
v2
2h

= 0,

2vn − vn−1
h2

− vn−1
2h

=
1

h2
− 1

2h
.

(37)

c Since the exact solution is given by

u(x) =
ex − 1

e− 1
, (38)

we immediately see that the exact solution is a real–valued exponential, which
is monotonic by its nature. Since the numerical solution should have the same
characteristics as the exact solution, non–monotonic (and hence oscillatory)
solutions should be considered as not reflecting the analytic solution.

d i The magnitude of the local truncation error is given by

|ε| = |
∫ b

a

f(x)dx− b− a
2

(f(a) + f(b)) |. (39)

We use linear interpolation over the interval (a, b), which gives

f(x)−
(
f(a)

x− b
a− b

+ f(b)
x− a
b− a

)
=

1

2
(x−a)(x−b)f ′′(ξ), for a ξ ∈ (a, b)\{x}.

(40)
Since ∫ b

a

(
f(a)

x− b
a− b

+ f(b)
x− a
b− a

)
dx =

b− a
2

(f(a) + f(b)) , (41)

this implies that

|
∫ b

a

f(x)dx− b− a
2

(f(a) + f(b)) | = |
∫ b

a

1

2
(x− a)(x− b)f ′′(ξ(x))dx|

≤ 1

2

∫ b

a

(x− a)(b− x)|f ′′(ξ(x))|dx ≤ M

2

∫ b

a

(x− a)(b− x)dx.

(42)
Continuity, and hence boundedness, of the second–order derivatives on the
interval (0, 1) implies the existence of an M > 0 such that |f ′′(x)| ≤ M on
the interval (a, b), since the derivatives of f up to second order are bounded.
Furthermore, we have∫ b

a

(x− a)(x− b)dx =
(b− a)3

6
, (43)
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by which we finally conclude

|
∫ b

a

f(x)dx− b− a
2

(f(a) + f(b)) | ≤ M

12
(b− a)3, (44)

where, as we saw earlier, M is an upper bound for the second order deriva-
tive on the interval (a, b).

ii Application over the gridnodes {xj}, with gridspacing h, gives∫ 0.3

0

f(x)dx ≈
n∑

j=1

∫ xj

xj−1

f(x)dx =
n∑

j=1

h

2
(f(xj−1) + f(xj))

= h

(
f(x0)

2
+ f(x1) + . . .+ f(xn−1) +

f(xn)

2

)
.

(45)

Application to the current situation, with h = 0.1, n = 3, and the tabular
values, gives∫ 0.3

0

f(x)dx ≈ 0.1

(
0

2
+ 0.01 + 0.04 +

0.09

2

)
= 0.0095. (46)
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