DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)

Thursday July 5 2012, 18:30-21:30

1. To integrate the initial value problem

$$
\begin{equation*}
y^{\prime}=f(t, y(t)), \quad y\left(t^{0}\right)=y^{0} \tag{1}
\end{equation*}
$$

we consider the Trapezoidal Rule

$$
\begin{equation*}
w^{n+1}=w^{n}+\frac{h}{2}\left(f\left(t^{n}, w^{n}\right)+f\left(t^{n+1}, w^{n+1}\right)\right) \tag{2}
\end{equation*}
$$

and the Modified Euler Method

$$
\begin{cases}\hat{w}^{n+1}=w^{n}+h f\left(t^{n}, w^{n}\right), & \text { predictor-step } \tag{3}\\ w^{n+1}=w^{n}+\frac{h}{2}\left(f\left(t^{n}, w^{n}\right)+f\left(t^{n+1}, \hat{w}^{n+1}\right)\right), & \text { corrector-step }\end{cases}
$$

Here w^{n} denotes the numerical approximation at time $t^{n}=t^{0}+n h$, and h represents the time-step.
[a] Use the test-equation to prove that the amplification factors of the two methods are given by

$$
\begin{array}{ll}
Q_{T}(h \lambda)=\frac{1+\frac{h \lambda}{2}}{1-\frac{h \lambda}{2}}, & \text { Trapezoidal Rule, } \\
Q_{M E}(h \lambda)=1+h \lambda+\frac{(h \lambda)^{2}}{2}, & \text { Modified Euler Method. } \tag{2pt.}
\end{array}
$$

[b] Show that the local truncation error of both methods is of order $O\left(h^{2}\right)$.
Hint: It is allowed to use the test equation for both the Trapezoidal Rule and Modified Euler Method. Further, note that $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+O\left(x^{4}\right)$ and if $|x|<1$ then $\frac{1}{1-x}=1+x+x^{2}+x^{3}+O\left(x^{4}\right)$.

[^0]We apply both methods to the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+y=t(1-t), \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{5}
\end{equation*}
$$

[c] Show that, by setting $y_{1}(t)=y(t)$ and $y_{2}(t)=y^{\prime}(t)$, this initial value problem can be rewritten as the following system of first-order equations

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \tag{6}\\
-1 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}+\binom{0}{t(1-t)}
$$

with initial condition $y_{1}(0)=0$ and $y_{2}(0)=1$.
[d] Use $h=\frac{1}{2}$ to compute w_{1} (one time-step) using both the Trapezoidal Rule and the Modified Euler Method.
(2pt.)
[e] Which of the two methods do you prefer to apply to the present initial value problem (in assignment [c-d])? Motivate your choice in terms of accuracy, stability and workload.
(2pt.)
2. (a) The following iteration process is given $x_{n+1}=g\left(x_{n}\right)$, with

$$
g\left(x_{n}\right)=x_{n}+h\left(x_{n}\right)\left(x_{n}^{3}-3\right)
$$

where h is a continuous function with $h(x) \neq 0$ for each $x \neq 0$. If this process converges, to which (real valued) limit p does it converge?
(b) Consider three possible choices for $h(x)$:

> i. $h_{1}(x)=-\frac{1}{x^{4}}$
> ii. $h_{2}(x)=-\frac{1}{x^{2}}$
> iii. $h_{3}(x)=-\frac{1}{3 x^{2}}$

For which choice does the process not converge? For which choice is the convergence the fastest? Motivate your answer.
(c) p is the root of a given function $f . \hat{f}$ is the function perturbed by measurement errors. It is given that $|\hat{f}(x)-f(x)| \leq \epsilon_{\max }$ for all x. Show that the root \hat{p} from \hat{f} satisfies the following inequality $|\hat{p}-p| \leq \frac{\epsilon_{\max }}{\left|f^{\prime}(p)\right|}$.
(d) Subsequently, we use the Newton-Raphson method, which is given by

$$
z_{k+1}=z_{k}-\frac{f\left(z_{k}\right)}{f^{\prime}\left(z_{k}\right)}
$$

We take $f(x)=x^{4}-3 x$. Do one step with the Newton-Raphson method with initial guess $z_{0}=1$.
(2 pt.)
(e) Derive the Newton-Raphson method.
(f) Let z be the solution of $f(z)=0$. Demonstrate that

$$
\begin{equation*}
\left|z-z_{k+1}\right|=K\left|z-z_{k}\right|^{2}, \text { for } k \rightarrow \infty \tag{7}
\end{equation*}
$$

and determine the value of K (for $k \rightarrow \infty$).

[^0]: ${ }^{0}$ please turn over, For the answers of this test we refer to: http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html

