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1. [a] The test–equation is given by y′ = λy, and we bear in mind that the amplification
factor is defined by

Q(hλ) =
wn+1

wn
. (1)

Then for the Trapezoidal Rule, we get

wn+1 = wn +
h

2
(λwn + λwn+1) = wn +

hλ

2
(wn + wn+1). (2)

The above equation is rewritten as

wn+1(1− hλ

2
) = wn(1 +

hλ

2
). (3)

Then, using the definition of the amplification factor, we immediately have

QT (hλ) =
1 + hλ

2

1− hλ
2

. (4)

The Modified Euler Method is treated analogously, to get

ŵn+1 = wn + hλwn, predictor

wn+1 = wn + h
2
(λwn + λŵn+1), corrector.

(5)

Combining the predictor and corrector, gives

wn+1 = wn +
hλ

2
(wn + wn + hλwn) = wn(1 + hλ +

(hλ)2

2
). (6)

Finally, the definition of the amplification factor implies that

QME(hλ) = 1 + hλ +
(hλ)2

2
. (7)

[b] The local truncation error is defined by

τn+1(h) =
yn+1 − zn+1

h
, (8)
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where yn+1 and zn+1, respectively, denote the exact solution and the numerical ap-
proximation at time tn+1 under using yn. Since, we use the test–equation to estimate
the local truncation error, we get

zn+1 = Q(hλ)yn. (9)

The exact solution to the test–equation at time tn+1 is expressed in terms of yn by

yn+1 = yneλh. (10)

Substitution into the definition of the local truncation error, gives

τn+1(h) =
yn

h
(ehλ −Q(hλ)) =

yn

h
(1 + hλ +

(hλ)2

2
+

(hλ)3

3!
+ O(h4)−Q(hλ)), (11)

where we used the Taylor expansion of the exponential around 0. For the Trapezoidal
Rule, we have

QT (hλ) =
1 + hλ

2

1− hλ
2

= (1 +
hλ

2
)(1 +

hλ

2
+ (

hλ

2
)2 + (

hλ

2
)3 + O(h4)) =

1 + hλ +
(hλ)2

2
+

(hλ)3

4
+ O(h4).

(12)

Using equation (11), we get after some rearrangements

τn+1(h) = −ynλ3h2

12
+ O(h3) = O(h2). (13)

The Modified Euler Method is treated similarly with

QME(hλ) = 1 + hλ +
(hλ)2

2
, (14)

to give via equation (11)

τn+1(h) =
ynλ3h2

6
+ O(h3) = O(h2). (15)

[c] Let y1 = y and let y2 = y′1, then y′2 = y′′1 = y′′. Hence we have

y′1 = y2, y′2 = −y1 + t(1− t). (16)

The two equations are linear and therewith, one can rewrite this system using a
matrix representation: (

y′1
y′2

)
=

(
0 1
−1 0

) (
y1

y2

)
+

(
0

t(1− t)

)
, (17)
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Further, we have y1(0) = y(0) = 0 and y2(0) = y′(0) = 1.

[d] We use h = 1
2
, and let

A =

(
0 1
−1 0

)
, w1 =

(
w1

1

w1
2

)
, y0 =

(
0
1

)
, (18)

where the subscript stands for the component, whereas the superscript denotes the
time–index. The Trapezoidal Rule gives

w1 = y0 +
h

2
(Ay0 + Aw1 +

(
0
1
4

)
). (19)

This gives

(I − h

2
A)w1 = (I +

h

2
A)y0 +

h

2

(
0
1
4

)
. (20)

Substitution of h = 1
2
, gives the following linear system(

1 −1
4

1
4

1

)
w1 =

(
1
4
17
16

)
. (21)

This system is solved by

w1 =

33
68

16
17

 (22)

Next, we treat the Modified Euler Method. First, we carry out the prediction step

ŵ1 = y0 + hAy0 =

(
0
1

)
+

1

2

(
1
0

)
=

1
2

1

 . (23)

Subsequently, we perform the corrector step

w1 = y0 +
h

2

(
Ay0 + Aŵ1 +

(
0
1
4

))
. (24)

Using h = 1
2
, gives

w1 =

(
0
1

)
+

1

4

((
1
0

)
+

(
1
−1

2

)
+

(
0
1
4

))
=

 1
2

15
16

 . (25)

[e] The local truncation errors for both methods are approximated by

τT
n+1(h) = −ynλ3h2

12
, τEM

n+1 (h) =
ynλ3h2

6
. (26)

3



From these equations, it can be seen that the errors have the same order, although
the error from the Trapezoidal Rule is about twice as small as the one from the
Modified Euler Method in the limit for h → 0.

With regard to stability, the eigenvalues of A in the present initial value problem,
are given by λ = ±i. Herewith, the following amplification factors are obtained:

QT (h) =
1 + ±ih

2

1− ±ih
2

, QME(h) = 1± ih− 1

2
h2. (27)

This gives the following moduli

|QT (h)| = 1, |QME(h)| =
√

(1− h2

2
)2 + h2 =

√
1 +

h4

4
> 1. (28)

Hence the Trapezoidal Rule is neutrally stable, whereas the Modified Euler Method
is unstable.

The workload is smaller for the Modified Euler Method, since no linear system needs
to be solved. Although the solution of the linear system may require considerable
computation time if A is a very large matrix, the issue is not very important for the
present case.

Therefore, the Trapezoidal Rule is to be preferred for the present system since the
system is just a two-by-two set of equations.

2. (a) The iteration process is a fixed point method. If the process converges we have:
limn→∞ xn = p. Using this in the iteration process yields:

lim
n→∞

xn+1 = lim
n→∞

[xn + h(xn)(x3
n − 3)]

Since h is a continuous function one obtains:

p = p + h(p)(p3 − 3)

so
h(p)(p3 − 3) = 0.

Since h(x) 6= 0 for each x 6= 0 it follows that p3 − 3 = 0 and thus p = 3
1
3 .

(b) The convergence of a fixed point method xn+1 = g(xn) is determined by g′(p).
If |g′(p)| < 1 the method converges, whereas if |g′(p)| > 1 the method diverges.
For all choices we compute the first derivative in p. For the first method we
elaborate all steps. For the other methods we only give the final result. For h1

we have g1(x) = x− x3−3
x4 . The first derivative is:

g′1(x) = 1− 3x2 · x4 − (x3 − 3) · 4x3

(x4)2

4



Substitution of p yields:

g′1(p) = 1− 3p6 − (p3 − 3) · 4p3

p8
.

Since p = 3
1
3 the final term cancels:

g′1(p) = 1− 3p6

p8
= 1− 3

1
3 = −0.4422.

This implies that the method is convergent with convergence factor 0.4422.

For the second method we have:

g′2(p) = 1− 3p4 − (p3 − 3) · 2p
p4

= 1− 3p4

p4
= −2

Thus the method diverges.

For the third method we have:

g′3(p) = 1− 9p4 − (p3 − 3) · 6p
9p4

= 1− 9p4

9p4
= 0

Thus the method is convergent with convergence factor 0.

Concluding we note that the third method is the fastest.

(c) To estimate the error in p we first approximate the function f in the neighboor-
hood of p by the first order Taylor polynomial:

P1(x) = f(p) + (x− p)f ′(p) = (x− p)f ′(p).

Due to the measurement errors we know that

(x− p)f ′(p)− εmax ≤ P̂1(x) ≤ (x− p)f ′(p) + εmax.

This implies that the perturbed root p̂ is bounded by the roots of (x−p)f ′(p)−
εmax and (x− p)f ′(p) + εmax, which leads to

p− εmax

|f ′(p)|
≤ p̂ ≤ p +

εmax

|f ′(p)|
.

(d) Using the Newton-Raphson iteration method

zk+1 = zk −
f(zk)

f ′(zk)

for f(x) = x4 − 3x we have to compute f ′(x). It easily follows that f ′(x) =
4x3−3. Substituting this together with the initial guess z0 = 1 into the definition
of the Newton-Raphson method leads to:

z1 = z0 −
f(z0)

f ′(z0)
= z0 −

z4
0 − 3z0

4z3
0 − 3

= 1− 1− 3

4− 3
= 3.

5



(e) The Newton-Raphson iteration method can be derived using a graph of a func-
tion, in which the zero of the tangent at zk on f(x) defines zk+1. We consider a
linearization of f(x) around zk:

L(x) := f(zk) + (x− zk)f
′(zk),

and determine its zero, that is L(zk+1) = 0, this gives

zk+1 = zk −
f(zk)

f ′(zk)
, provided that f ′(zk) 6= 0,

�

(f) We consider a Taylor polynomial around zk, to express z

0 = f(z) = f(zk) + (z − zk)f
′(zk) +

(z − zk)
2

2
f ′′(ξk), (29)

for some ξk between z and zk. Note that this form gives the exact representation.
Subsequently, we consider the Newton-Raphson approximation

0 = L(zk+1) = f(zk) + (zk+1 − zk)f
′(zk). (30)

Subtraction of these two above equations gives

zk+1 − z =
(zk − z)2

2

f ′′(ξk)

f ′(zk)
, provided that f ′(zk) 6= 0, (31)

and hence

|zk+1 − z| = (zk − z)2

2
|f
′′(ξk)

f ′(zk)
|, provided that f ′(zk) 6= 0, (32)

Note that f ′′(x) = 12x2 and z = 3
1
3 . Using zk → z, ξk → z as k → ∞

and continuity of f(x) up to at least the second derivative, we arrive at K =

| f ′′(z)
2∗f ′(z)

| = | 12z2

2(4z3−3)
| ≈ 1.3867. �

6


