DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday August 30 2012, 18:30-21:30

1. We consider the following predictor-corrector method for the integration of the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$:

$$
\begin{align*}
& w_{n+1}^{*}=w_{n}+h f\left(t_{n}, w_{n}\right) \\
& w_{n+1}=w_{n}+h\left((1-\mu) f\left(t_{n}, w_{n}\right)+\mu f\left(t_{n+1}, w_{n+1}^{*}\right)\right), \tag{1}
\end{align*}
$$

where h, μ and w_{n} respectively denote the time step, a real number $(0 \leq \mu \leq 1)$, and the numerical solution at time t_{n}.
(a) Show that the local truncation error of the abovementioned method is of order $O(h)$, if $0 \leq \mu \leq 1$ and of order $O\left(h^{2}\right)$, if $\mu=\frac{1}{2}$ (Note that this has to be demonstrated for the general differential equation $\left.y^{\prime}=f(t, y)\right)$.
(b) Demonstrate that the amplification factor of the abovementioned method, is given by

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+\mu(h \lambda)^{2} . \tag{2pt}
\end{equation*}
$$

(c) We consider the following system of non linear differential equations:

$$
\begin{align*}
& x_{1}^{\prime}=-\sin x_{1}+2 x_{2}+t, x_{1}(0)=0, \\
& x_{2}^{\prime}=x_{1}-x_{2}^{2}, x_{2}(0)=1 \tag{2}
\end{align*}
$$

Do one step with the method given in (1) with $h=\frac{1}{2}$ and $\mu=\frac{1}{2}$.
(d) Show that the Jacobian of the right-hand side of (2) at $t=0$ is given by:

$$
\left(\begin{array}{cc}
-1 & 2 \tag{1pt}\\
1 & -2
\end{array}\right)
$$

(e) Choose $\mu=0$. For which values of h is the method applied to (2) stable at $t=0$? Answer the same question for $\mu=\frac{1}{2}$.

[^0]2. We approximate the integral $\int_{a}^{b} f(x) d x$ using gridnodes $x_{j}=a+(j-1) h$, where $x_{n+1}=b$. For an interval between two adjacent gridnodes, $\left(x_{j}, x_{j+1}\right)$, the Rectangle Rule gives the approximation $h f\left(x_{j}\right)$ and a repetitive application gives $\int_{a}^{b} f(x) d x \approx$ $T_{0}=h \sum_{j=1}^{n} f\left(x_{j}\right)$.
a Show that the local truncation error, $\left|E_{0}^{I}\right|:=\left|\int_{x_{j}}^{x_{j+1}} f(x) d x-h f\left(x_{j}\right)\right|$, and global error, $\left|E_{0}\right|:=\left|\int_{a}^{b} f(x) d x-T_{0}\right|$ are, respectively, given by
\[

$$
\begin{equation*}
\left|E_{0}^{I}\right| \leq \frac{h^{2}}{2} \max _{x \in\left[x_{j}, x_{j+1}\right]}\left|f^{\prime}(x)\right|, \text { and }\left|E_{0}\right| \leq \frac{(b-a) h}{2} \max _{x \in[a, b]}\left|f^{\prime}(x)\right| . \tag{3}
\end{equation*}
$$

\]

Hint: You can use Taylor's Theorem, and $\max _{x \in[a, b]}|f(x)|$ denotes the maximum of $|f(x)|$ over the interval $[a, b]$.
(2 pt.)
(a) Next we also incorporate the first-order derivative of f in the gridnodes $\left\{x_{j}\right\}$. Use Taylor's Theorem to derive that the integral can be approximated by T_{1} using the gridnodes with global error E_{1}, where

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx T_{1}=h \sum_{j=1}^{n}\left[f\left(x_{j}\right)+\frac{h}{2} f^{\prime}\left(x_{j}\right)\right],\left|E_{1}\right| \leq \frac{(b-a) h^{2}}{6} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right| \tag{4}
\end{equation*}
$$

(b) Use the method from equation (4) with $h=\frac{1}{2}$ to approximate $\int_{0}^{1} x^{2} d x$ and compare the error with the estimate for $\left|E_{1}\right|$.
d Next we use the derivatives of f up to the order 2. Further, T_{2} and E_{2} are, respectively, the approximation of $\int_{a}^{b} f(x) d x$ using these derivatives and the corresponding global error. Show that

$$
\begin{equation*}
T_{2}=T_{1}+\frac{h^{3}}{3!} \sum_{j=1}^{n} f^{\prime \prime}\left(x_{j}\right), \text { and }\left|E_{2}\right| \leq \frac{(b-a) h^{3}}{4!} \max _{x \in[a, b]}\left|f^{\prime \prime \prime}(x)\right| \tag{5}
\end{equation*}
$$

(2pt.)
(c) Suppose that all values of f and their derivatives contain a error of measurement or rounding, i.e. $\left|\tilde{f}^{(k)}\left(x_{j}\right)-\tilde{f}^{(k)}\left(x_{j}\right)\right| \leq \varepsilon$, for all j and k-th derivatives $(k=0$ gives f itself). Let T_{2} and \tilde{T}_{2}, respectively, be computed using the exact (f) and available values (\tilde{f}) of f and its derivatives, show that the influence of the this error can be estimated by:

$$
\begin{equation*}
\left|\tilde{T}_{2}-T_{2}\right| \leq(b-a) \varepsilon\left(1+\frac{h}{2}+\frac{h^{2}}{3!}\right) \tag{6}
\end{equation*}
$$

[^0]: ${ }^{0}$ please turn over, For the answers of this test we refer to: http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html

