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1. (a) The local truncation error is given by

Yn+1 — Zn+1
T () = 1)
where 2, is the result of applying the method once with starting solution y,,.
Here we obtain v, .1 by a Taylor expansion around ¢,:

2

/ h "

For z,41, we obtain, after substitution of the predictor step for 2}, , into the
corrector step

Zn+1 = Yn + h ((1 - ,u)f(tna yn) + ﬂf(tn + h7 Yn + hf(tna yn))) (3)
After a Taylor expansion of f(t,+h, y,+hf(tn,y,)) around (¢,,y,) one obtains:
a t'm n a tn; n

s =t (1= 0 Ctntn) + o) + (LG22 )
(4)

From the differential equation we know that:

Y (tn) = f(tn, Un) (5)
From the Chain Rule of Differentiation, we derive

d ny Jn a ny Jn a ny Jn !
S (t) = f(tdty ) _ f(gty ) f(gyy )y(tn) (6)

after substitution of the differential equation one obtains:

6 ny n 6 ny n
S (1) = f(taty)+ f(tayy >f(tn,yn) 7)

This implies that 2,1 = y, + hy/(t,) + ph*y” (t,). Subsequently, it follows that

2
Yni1 — Zny1 = O(R?), and, hence 7,1(h) = O(: ) =O(h) for0 < p <1, (8)

O(h?)
h

1
Ynt1 — Znp1 = O(R?), and, hence 7,1 (h) = = O(h?) for u = 3 9)

)+ o<h2)) |



(b)

Consider the test equation ¥’ = Ay, then, herewith, one obtains
Wy = Wy + hAw, = (1 4+ h\)wy,
W1 = Wy + h((1 — p)Aw, + prw;, ) = (10)
= wy, + h((1 — p)Aw, + pA(w, + hdw,)) = (1 + A + p(hX)?)w,.

Hence the amplification factor is given by

Q(h\) = 1+ hA + pu(h\)? (11)

Doing one step with the given method with h = % and p = % leads to the

following steps:
Predictor: §
z1\ _ (0 +1 —sin(0) +24+0) (1
za)  \1) 2 0—1 -4
z1\ _ (O L(1/2 1 —sin(1)+2-%+%
() = ()2 G (4) 2 (M

which can be written as:

) (0+35—Isin(1)+2\  (I—1sin(1)\ [0.6646
)\ 1-3+i-1% ) = —\0.9375

In order to compute the Jacobian, we note that the right-hand side of the non
linear system can be noted by:

Corrector:

fi(zy,xe) = —sinxy + 229 + ¢

f2($1>372) =T — 1‘3

From the definition of the Jacobian it follows that:
g—ﬁ g—if; . (— CcoS T 2 >
of: of: - _ :
6_233 ﬁ 1 21’2
Substitution of ($1(O)> = <(1)> shows that

2(0)
J = (‘11 _22) :

For the stability it is sufficient to check that |Q(hA;)| < 1 for all the eigenvalues
of the Jacobian matrix. It is easy to see that the eigenvalues of the Jacobian
matrix are Ay = —3 and Ay = 0.



For the choice p = 0 we note that the method is equal to the Euler Forward
method. For real eigenvalues the Euler Forward method is stable if h < _72
Since Ay = —3 and Ay = 0 we know that the method is stable if A < :—§ = %
(another option is to derive the values of h such that |Q(hA;)| <1 by using the
description of Q(hA\))

For the choice pu = % we use the expression
1
Q(hA\) =1+ hX\ + §(hA)2

For Ay = 0 it appears that Q(hA2) = 1 so the inequality is satisfied for all h.
For \; = —3 we have to check the following inequalities:

9
—1§1—3h+§h2§1
For the left-hand inequality we arrive at
9.9
0< §h —3h+2

It appears that the discriminant 9 —4- % -2 is negative, so there are no real roots
which implies that the inequality is satisfied for all A.

For the right-hand inequality we get
9.9
—3h+-h" <0
2
9
“h* < 3h
SV S
SO
h <

[GVRI )

(another option is to see that for p = % the method is equal to the modified
Euler method, and remember that this method is stable for real eigenvalues if

h<3)

Taylor’s Theorem (or here the Mean Value Theorem) gives for a zeroth order
approximation around z;:

f@) = f(z) + (& = 2;) f'(§()), (12)

for a {(x) € (xj,z) if © > z;. Then we consider the interval [z;,x;41) and use
Taylor’s Theorem around z; in the integration to get

/g_ﬁj+1 fx)dx = /%jﬂ f @)+ (z—z;) f'(§(x))dx = hf(fﬁj)jL/%m(f_ffj)f/(f(x))dl“-
g / ] (13)



Hence we get

/ flaio [ fanl=1 | < e fE@)da. (14)

Taking the maximum value of f" over the interval [z;, z,41], yields

|/M+1(x_g;j)f/(§( ))dCL” < max ,($)|/%j+1(qj—l’j)dx_ h_2 max |f/(x)|

j xE[Z‘J :tj+1 2 ZEE[Ij,Ij+1}
(15)
By combining relations (14) and (15), we proved that

xa+1 Tjt1 h2 ,
| / oo — / Fa)l < max [f@). (16)

; TE€[x;j,wj41]

Next, we deal with the entire interval [a, b], then

I/f dw—hZf%|—|Z</ dfc—hf(%)>|- (17)

We use the Triangle Inequality to get

|Z</W dx—hij>|<21/%f Vo — hf(z).  (18)

Tj Tj

From relation (16), it follows that

Tj41 h2 n .
Z\/ f(a)dz = hf(z)]. < = max | f'(z)]. (19)
x; o1 o€l
Since maxXye(ay) | f'(7)] > MaXee (o) 0,0 |f/ (@), V5 € {1,...,n}, we get
h2 n h2
) max [ f'(«)] < o0 max |f'(z)]. (20)
P z€[z;,2j41] z€[a,b]

Since z,+1 = a + nh = b, we have nh = b — a and hence the above inequality
gives

h2” 2

max (/@) < 0 ma |7/(n)] = S(b—a) max [F(@)]. (21)

5 o €[z, 541] 2 x€[a,b] 2 z€[a,b]

Hence the global error can be estimated from above by

\/f dx—hfo] < = b—a)max\f()] (22)

z€la,b]



(b) Incorporating the first-order derivative in Taylor’s Theorem (linearization) gives

/ (':E — xj)Q "
fla) = fla) + (2 = 2) f ;) + =5 F"(£(2)), (23)
for a £(z) € (x;,x) if > x;. We start integrating over the interval [x;, ;1] to
get

2

[ swie= [ ) + - + CSEE e =

(24)

)+ F )+ [ ) ()

Ty

Hence, we obtain

| / Fla)de — (hf(ey) + 5 )] = | / =) g (a))aa| <

ax | ()] /Ijo M — h_3 max | f"(z)].

Ie[xj,ijrl 2 6 IE[Ij,Ij+1]
(25)
Analogously to the previous assignment, we get

=1 [ ogia =32 (W) + ) =15 (

\

[ stwas = (nste) + )

7 /

Z\( /:“fmdx—(hf(asj>+%2f'<xj>)> <% ()<

g Elm]

h3 h?
§ " max (@) = —a) max /" ()],
(26)
Hence f;f(x)dx ~ Y h(f(zy) + Bf'(z;)) = T where the global error is
estimated from above by the above expression.
(¢) Upon considering the interval (0,1) with h = %, we use z; = 0 and z, = 1
(n =2). Then, we get
t, h. . , 1 1, 1 1 1
vidz & h(f(x1) + fl22) + 5 (f (@) + f(22)) = 50+ (5)°+ (042 5)) = 7.
0
(27)
The exact answer is given by %, hence the error is % To check our result, we
use the upper bound of the error given in relation (26):
h? 1 1 1

E(b—@)g@ﬁf”@ﬂ = 6'(5)2'1'2: T (28)



Note that here it was used that the second-order derivative of 22 is given by 2
Hence our the error that we found using the exact solution does not exceed the
upper bound from relation (26), and hence our result makes sense.

(d) T; is the approximation of the integral obtained by the use the first order deriva-

tives, hence T is the analogon with the first and second order derivatives, hence

T, =

=

[t + @) + “‘Q—Wf%xj)dx) -

J

$J+1 $J+1 _ (
(/ f(zj) + (x —x)) f'(z; d$> + Z/ (@ mj f"(z)dx
1

n n

Tj+1 (x_x,)Q
D e )

20)

n

]:

The last step follows from evaluation of the integral. Hence we demonstrated
that

n

=T+ = Z £ (x;). (30)

Further, the local error is found by using Taylor’s Theorem over the interval
[z, 2j11] to get

| /%j+1 Fa)de </%j+1 Fa) 4+ %f”(ay)dx) =

J

’ /% el < max () / @ n) = (3D)

w€[zj,mj41]

B nax (@)
4! zefu; ;i)

Here, the last step follows from evaluation of the integral. A summation proce-
dure over all intervals, similar to assignment 2.a., gives the global error bound:

b 4 M
h
[Eo| =1 [ fla)de —Ts| < — max | f"(z)] <
a 4' =1 xe[xj,zj+1]
(32)
h4 /// h3(b B a)
PR g@ﬁ ()] = 4 zefab)



(e) Let Ty and T, respectively, be the approximation of fab f(z)dz using the exact
and available values of f and its derivatives. Then, we have

n Tit1 — )2
n=3 [ e B -

> (1At + 1)+ ")) = 3

j=1
Ry fla)+ 72]“(%‘) + ny"(l’j)-
j=1 j=1 =l

For T, we similarly have
h - - h? <~ -,
=h E fl)) t3 > Fw)) + e NKEDE (34)

J=1 J=1

Subtraction of the above two equations, taking the absolute value, and using
the Triangle Inequality, gives

T — T2| <

n B h2n
R ) = Fla) + o S 1) — )|+ Z|f’/% f' ()l

~ (35)
Using |f®)(z;) — f®)(x;)| < e for all k and j, and nh = b — a, gives
- h? h3
\Tg—Tgygh'nf—l—EWf—i—y n-e=
h h2 3 hk—l (36)
— 1 = (b— .
(b—a)e < +5+ 3|> (b CL)&?; o



