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1. (a) The local truncation error is given by

τn+1(h) =
yn+1 − zn+1

h
(1)

where zn+1 is the result of applying the method once with starting solution yn.
Here we obtain yn+1 by a Taylor expansion around tn:

yn+1 = yn + hy′(tn) +
h2

2
y′′(tn) + O(h3). (2)

For zn+1, we obtain, after substitution of the predictor step for z∗n+1 into the
corrector step

zn+1 = yn + h ((1− µ)f(tn, yn) + µf(tn + h, yn + hf(tn, yn))) (3)

After a Taylor expansion of f(tn+h, yn+hf(tn, yn)) around (tn, yn) one obtains:

zn+1 = yn+h

(
(1− µ)f(tn, yn) + µ(f(tn, yn) + h(

∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
)) + O(h2)

)
.

(4)
From the differential equation we know that:

y′(tn) = f(tn, yn) (5)

From the Chain Rule of Differentiation, we derive

y′′(tn) =
df(tn, yn)

dt
=

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
y′(tn) (6)

after substitution of the differential equation one obtains:

y′′(tn) =
∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn) (7)

This implies that zn+1 = yn + hy′(tn) + µh2y′′(tn). Subsequently, it follows that

yn+1 − zn+1 = O(h2), and, hence τn+1(h) =
O(h2)

h
= O(h) for 0 ≤ µ ≤ 1, (8)

yn+1 − zn+1 = O(h3), and, hence τn+1(h) =
O(h3)

h
= O(h2) for µ =

1

2
. (9)
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(b) Consider the test equation y′ = λy, then, herewith, one obtains

w∗
n+1 = wn + hλwn = (1 + hλ)wn,

wn+1 = wn + h((1− µ)λwn + µλw∗
n+1) =

= wn + h((1− µ)λwn + µλ(wn + hλwn)) = (1 + hλ + µ(hλ)2)wn.
(10)

Hence the amplification factor is given by

Q(hλ) = 1 + hλ + µ(hλ)2. (11)

(c) Doing one step with the given method with h = 1
2

and µ = 1
2

leads to the
following steps:
Predictor: (

x1

x2

)∗

=

(
0
1

)
+

1

2

(
− sin(0) + 2 + 0

0− 1

)
=

(
1
1
2

)
Corrector: (

x1

x2

)
=

(
0
1

)
+

1

2

(
1

2

(
2
−1

)
+

1

2

(
− sin(1) + 2 · 1

2
+ 1

2

1− (1
2
)2

))
which can be written as:(

x1

x2

)
=

(
0 + 1

2
− 1

4
sin(1) + 3

8

1− 1
4

+ 1
4
− 1

16

)
=

(
7
8
− 1

4
sin(1)

15
16

)
=

(
0.6646
0.9375

)
(d) In order to compute the Jacobian, we note that the right-hand side of the non

linear system can be noted by:

f1(x1, x2) = − sin x1 + 2x2 + t

f2(x1, x2) = x1 − x2
2

From the definition of the Jacobian it follows that:(
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

)
=

(
− cos x1 2

1 −2x2

)
.

Substitution of

(
x1(0)
x2(0)

)
=

(
0
1

)
shows that

J =

(
−1 2
1 −2

)
.

(e) For the stability it is sufficient to check that |Q(hλi)| ≤ 1 for all the eigenvalues
of the Jacobian matrix. It is easy to see that the eigenvalues of the Jacobian
matrix are λ1 = −3 and λ2 = 0.
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For the choice µ = 0 we note that the method is equal to the Euler Forward
method. For real eigenvalues the Euler Forward method is stable if h ≤ −2

λ
.

Since λ1 = −3 and λ2 = 0 we know that the method is stable if h ≤ −2
−3

= 2
3

(another option is to derive the values of h such that |Q(hλi)| ≤ 1 by using the
description of Q(hλ))

For the choice µ = 1
2

we use the expression

Q(hλ) = 1 + hλ +
1

2
(hλ)2

For λ2 = 0 it appears that Q(hλ2) = 1 so the inequality is satisfied for all h.
For λ1 = −3 we have to check the following inequalities:

−1 ≤ 1− 3h +
9

2
h2 ≤ 1

For the left-hand inequality we arrive at

0 ≤ 9

2
h2 − 3h + 2

It appears that the discriminant 9−4 · 9
2
·2 is negative, so there are no real roots

which implies that the inequality is satisfied for all h.

For the right-hand inequality we get

−3h +
9

2
h2 ≤ 0

9

2
h2 ≤ 3h

so

h ≤ 2

3

(another option is to see that for µ = 1
2

the method is equal to the modified
Euler method, and remember that this method is stable for real eigenvalues if
h ≤ −2

λ
)

2. (a) Taylor’s Theorem (or here the Mean Value Theorem) gives for a zeroth order
approximation around xj:

f(x) = f(xj) + (x− xj)f
′(ξ(x)), (12)

for a ξ(x) ∈ (xj, x) if x > xj. Then we consider the interval [xj, xj+1) and use
Taylor’s Theorem around xj in the integration to get∫ xj+1

xj

f(x)dx =

∫ xj+1

xj

f(xj)+(x−xj)f
′(ξ(x))dx = hf(xj)+

∫ xj+1

xj

(x−xj)f
′(ξ(x))dx.

(13)
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Hence we get

|
∫ xj+1

xj

f(x)dx−
∫ xj+1

xj

f(xj)| = |
∫ xj+1

xj

(x− xj)f
′(ξ(x))dx|. (14)

Taking the maximum value of f ′ over the interval [xj, xj+1], yields

|
∫ xj+1

xj

(x−xj)f
′(ξ(x))dx| ≤ max

x∈[xj ,xj+1]
|f ′(x)|

∫ xj+1

xj

(x−xj)dx =
h2

2
max

x∈[xj ,xj+1]
|f ′(x)|.

(15)
By combining relations (14) and (15), we proved that

|
∫ xj+1

xj

f(x)dx−
∫ xj+1

xj

f(xj)| ≤
h2

2
max

x∈[xj ,xj+1]
|f ′(x)|. (16)

Next, we deal with the entire interval [a, b], then

|
∫ b

a

f(x)dx− h
n∑

j=1

f(xj)| = |
n∑

j=1

(∫ xj+1

xj

f(x)dx− hf(xj)

)
|. (17)

We use the Triangle Inequality to get

|
n∑

j=1

(∫ xj+1

xj

f(x)dx− hf(xj)

)
| ≤

n∑
j=1

|
∫ xj+1

xj

f(x)dx− hf(xj)|. (18)

From relation (16), it follows that

n∑
j=1

|
∫ xj+1

xj

f(x)dx− hf(xj)|. ≤
h2

2

n∑
j=1

max
x∈[xj ,xj+1]

|f ′(x)|. (19)

Since maxx∈([a,b] |f ′(x)| ≥ maxx∈([xj ,xj+1] |f ′(x)|, ∀j ∈ {1, . . . , n}, we get

h2

2

n∑
j=1

max
x∈[xj ,xj+1]

|f ′(x)| ≤ h2

2
· n · max

x∈[a,b]
|f ′(x)|. (20)

Since xn+1 = a + nh = b, we have nh = b − a and hence the above inequality
gives

h2

2

n∑
j=1

max
x∈[xj ,xj+1]

|f ′(x)| ≤ h2

2
· n · max

x∈[a,b]
|f ′(x)| =

h

2
(b− a) max

x∈[a,b]
|f ′(x)|. (21)

Hence the global error can be estimated from above by

|
∫ b

a

f(x)dx− h
n∑

j=1

f(xj)| ≤
h

2
(b− a) max

x∈[a,b]
|f ′(x)|. (22)
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(b) Incorporating the first–order derivative in Taylor’s Theorem (linearization) gives

f(x) = f(xj) + (x− xj)f
′(xj) +

(x− xj)
2

2
f ′′(ξ(x)), (23)

for a ξ(x) ∈ (xj, x) if x > xj. We start integrating over the interval [xj, xj+1] to
get∫ xj+1

xj

f(x)dx =

∫ xj+1

xj

f(xj) + (x− xj)f
′(xj) +

(x− xj)
2

2
f ′′(ξ(x))dx =

hf(xj) +
h2

2
f ′(xj) +

∫ xj+1

xj

(x− xj)
2

2
f ′′(ξ(x))dx.

(24)

Hence, we obtain

|
∫ xj+1

xj

f(x)dx− (hf(xj) +
h2

2
f ′(xj))| = |

∫ xj+1

xj

(x− xj)
2

2
f ′′(ξ(x))dx| ≤

max
x∈[xj ,xj+1]

|f ′′(x)|
∫ xj+1

xj

(x− xj)
2

2
=

h3

6
max

x∈[xj ,xj+1]
|f ′′(x)|.

(25)
Analogously to the previous assignment, we get

|E1| = |
∫ b

a

f(x)dx−
n∑

j=1

(
hf(xj) +

h2

2
f ′(xj)

)
| = |

n∑
j=1

(∫ xj+1

xj

f(x)dx−
(

hf(xj) +
h2

2
f ′(xj)

))
| ≤

n∑
j=1

|

(∫ xj+1

xj

f(x)dx−
(

hf(xj) +
h2

2
f ′(xj)

))
| ≤ h3

6

n∑
j=1

max
x∈[xj ,xj+1]

|f ′′(x)| ≤

h3

6
· n · max

x∈[a,b]
|f ′′(x)| =

h2

6
(b− a) max

x∈[a,b]
|f ′′(x)|.

(26)

Hence
∫ b

a
f(x)dx ≈

∑n
j=1 h(f(xj) + h

2
f ′(xj)) = T1 where the global error is

estimated from above by the above expression.

(c) Upon considering the interval (0, 1) with h = 1
2
, we use x1 = 0 and x2 = 1

2

(n = 2). Then, we get∫ 1

0

x2dx ≈ h(f(x1)+f(x2)+
h

2
(f ′(x1)+f ′(x2)) =

1

2
(0+(

1

2
)2+

1

4
(0+2 · 1

2
)) =

1

4
.

(27)
The exact answer is given by 1

3
, hence the error is 1

12
. To check our result, we

use the upper bound of the error given in relation (26):

h2

6
(b− a) max

x∈[a,b]
|f ′′(x)| =

1

6
· (1

2
)2 · 1 · 2 =

1

12
. (28)
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Note that here it was used that the second–order derivative of x2 is given by 2.
Hence our the error that we found using the exact solution does not exceed the
upper bound from relation (26), and hence our result makes sense.

(d) T1 is the approximation of the integral obtained by the use the first order deriva-
tives, hence T2 is the analogon with the first and second order derivatives, hence

T2 =

n∑
j=1

(∫ xj+1

xj

f(xj) + (x− xj)f
′(xj) +

(x− xj)
2

2
f ′′(xj)dx

)
=

n∑
j=1

(∫ xj+1

xj

f(xj) + (x− xj)f
′(xj)dx

)
+

n∑
j=1

∫ xj+1

xj

(x− xj)
2

2
f ′′(xj)dx

= T1 +
n∑

j=1

∫ xj+1

xj

(x− xj)
2

2
f ′′(xj)dx = T1 +

h3

3!

n∑
j=1

f ′′(xj).

(29)

The last step follows from evaluation of the integral. Hence we demonstrated
that

T2 = T1 +
h3

3!

n∑
j=1

f ′′(xj). (30)

Further, the local error is found by using Taylor’s Theorem over the interval
[xj, xj+1] to get

|
∫ xj+1

xj

f(x)dx−

(∫ xj+1

xj

f(xj) + . . . +
(x− xj)

2

2!
f ′′(xj)dx

)
| =

|
∫ xj+1

xj

(x− xj)
3

3!
f ′′′(ξ(x))dx| ≤ max

x∈[xj ,xj+1]
|f ′′′(x)|

∫ xj+1

xj

(x− xj)
3

3!
dx =

h4

4!
max

x∈[xj ,xj+1]
|f ′′′(x)|.

(31)

Here, the last step follows from evaluation of the integral. A summation proce-
dure over all intervals, similar to assignment 2.a., gives the global error bound:

|E2| = |
∫ b

a

f(x)dx− T2| ≤
h4

4!

n∑
j=1

max
x∈[xj ,xj+1]

|f ′′′(x)| ≤

h4

4!
· n · max

x∈[a,b]
|f ′′′(x)| =

h3(b− a)

4!
max
x∈[a,b]

|f ′′′(x)|.

(32)
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(e) Let T2 and T̃2, respectively, be the approximation of
∫ b

a
f(x)dx using the exact

and available values of f and its derivatives. Then, we have

T2 =
n∑

j=1

∫ xj+1

xj

f(xj) + . . . +
(x− xj)

2

2!
f ′′(xj)dx =

n∑
j=1

(
hf(xj) +

h2

2
f ′(xj) +

h3

3!
f ′′(xj)

)
=

h
n∑

j=1

f(xj) +
h2

2

n∑
j=1

f ′(xj) +
h3

3!

n∑
j=1

f ′′(xj).

(33)

For T̃2, we similarly have

T̃2 = h
n∑

j=1

f̃(xj) +
h2

2

n∑
j=1

f̃ ′(xj) +
h3

3!

n∑
j=1

f̃ ′′(xj). (34)

Subtraction of the above two equations, taking the absolute value, and using
the Triangle Inequality, gives

|T2 − T̃2| ≤

h
n∑

j=1

|f(xj)− f̃(xj)|+
h2

2

n∑
j=1

|f ′(xj)− f̃ ′(xj)|+
h3

3!

n∑
j=1

|f ′′(xj)− f̃ ′′(xj)|,

(35)
Using |f (k)(xj)− f̃ (k)(xj)| ≤ ε for all k and j, and nh = b− a, gives

|T2 − T̃2| ≤ h · n · ε +
h2

2
· n · ε +

h3

3!
· n · ε =

(b− a)ε

(
1 +

h

2
+

h2

3!

)
= (b− a)ε

3∑
k=1

hk−1

k!
.

.

(36)
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