DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday April 19 2012, 18:30-21:30

1. We consider the following method for the integration of the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$

$$
\left\{\begin{array}{l}
w_{n+1}^{*}=w_{n}+h f\left(t_{n}, w_{n}\right) \tag{1}\\
w_{n+1}=w_{n}+h\left(a_{1} f\left(t_{n}, w_{n}\right)+a_{2} f\left(t_{n+1}, w_{n+1}^{*}\right)\right)
\end{array}\right.
$$

a Show that the local truncation error of the above method has order $O(h)$ if $a_{1}+a_{2}=1$. Which value for a_{1} and a_{2} will give a local truncation error of order $O\left(h^{2}\right)$?
b Demonstrate that for general values of a_{1} and a_{2} the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+\left(a_{1}+a_{2}\right) h \lambda+a_{2}(h \lambda)^{2} . \tag{2}
\end{equation*}
$$

c Consider $\lambda<0$ and $\left(a_{1}+a_{2}\right)^{2}-8 a_{2}<0$. Derive the condition for stability, to be fullfilled by h.
d Consider the following system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=-y_{1} y_{2} \tag{3}\\
y_{2}^{\prime}=y_{1} y_{2}-y_{2}
\end{array}\right.
$$

Show that the Jacobian of the right hand side of the above system (which is used for the linearization of the above system) for the initial condition $y_{1}(0)=1$ and $y_{2}(0)=2$ is given by

$$
\left(\begin{array}{cc}
-2 & -1 \tag{1.5pt.}\\
2 & 0
\end{array}\right)
$$

e We apply the numerical method in equation (1) for the case that $a_{1}=a_{2}=1 / 2$ to system (3). Is the method stable near the initial condition $y_{1}(0)=1$ and $y_{2}(0)=2$, and step size $h=1$ (+ motivation)?

[^0]2. We consider the following boundary value problem:
\[

\left(P_{1}\right) $$
\begin{cases}-v^{\prime \prime}+v=2+x(2-x), & x \in(0,1) \\ v(0)=0, & v^{\prime}(1)=0\end{cases}
$$
\]

a Show that $v(x)=x(2-x)$ is the solution to the boundary value problem $\left(\mathrm{P}_{1}\right)$. (1 pt.)
b Give a finite difference discretization with error of $\mathrm{O}\left(h^{2}\right)$ (+ proof), where h represents the distance between adjacent gridnodes (Hint: use a virtual gridnode near $x=1$). The discretization must be symmetric.
c Give the system of equations that results from the finite difference discretization with three (after processing the virtual node) unknowns ($h=1 / 3$).
d Compute the error of the numerical solution, and explain your answer. (1 pt.)
e Next, we consider the following system of nonlinear equations

$$
\left\{\begin{array}{l}
18 v_{1}-9 v_{2}+v_{1}^{2}=\frac{20}{9} \\
-9 v_{1}+18 v_{2}+v_{2}^{2}=\frac{20}{9}
\end{array}\right.
$$

Carry out one step of Newton's method on the above system where you use $v_{1}=v_{2}=0$ as the initial guess.
(3 pt.)

[^0]: ${ }^{0}$ please turn over, For the answers of this test we refer to: http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html

