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1.

a The local truncation error is defined as

τn+1(h) =
yn+1 − zn+1

h
, (1)

where zn+1 is given by

zn+1 = yn + h (a1f(tn, yn) + a2f(tn + h, yn + hf(tn, yn)) . (2)

A Taylor expansion of f around (tn, yn) yields

f(tn+h, yn+hf(tn, yn)) = f(tn, yn)+h
∂f

∂t
(tn, yn)+hf(tn, yn)

∂f

∂y
(tn, yn)+O(h2). (3)

This is substituted into equation (2) to obtain

zn+1 = yn+h

(
a1f(tn, yn) + a2

[
f(tn, yn) + h

∂f

∂t
(tn, yn) + hf(tn, yn)

∂f

∂y
(tn, yn)

])
+O(h3).

(4)
A Taylor series for y(x) around tn gives for yn+1

yn+1 = y(tn + h) = yn + hy′(tn) +
h2

2
y′′(tn) + O(h3). (5)

From the differential equation we know that:

y′(tn) = f(tn, yn) (6)

From the Chain Rule of Differentiation, we derive

y′′(tn) =
df(tn, yn)

dt
=

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
y′(tn) (7)

after substitution of the differential equation one obtains:

y′′(tn) =
∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn) (8)

Equations (5) and (4) are substituted into relation (1) to obtain

τn+1(h) = f(tn, yn)(1− (a1 + a2)) + h

(
∂f

∂t
+ f

∂f

∂y

) (
1

2
− a2

)
+ O(h2) (9)

Hence
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(a) a1 + a2 = 1 implies τn+1(h) = O(h);

(b) a1 + a2 = 1 and a2 = 1/2, that is, a1 = a2 = 1/2, gives τn+1(h) = O(h2).

b The test equation is given by
y′ = λy. (10)

Application of the predictor step to the test equation gives

w∗
n+1 = wn + hλwn = (1 + hλ)wn. (11)

The corrector step yields

wn+1 = wn + h (a1λwn + a2λ(1 + hλ)wn) = (1 + (a1 + a2)hλ + a2h
2λ2)wn. (12)

Hence the amplification factor is given by

Q(hλ) = 1 + (a1 + a2)hλ + a2h
2λ2. (13)

c Let λ < 0 (so λ is real), then, for stability, the amplification factor must satisfy

−1 ≤ Q(hλ) ≤ 1, (14)

from the previous assignment, we have

−1 ≤ 1 + (a1 + a2)hλ + a2(hλ)2 ≤ 1 ⇔ −2 ≤ (a1 + a2)hλ + a2(hλ)2 ≤ 0. (15)

First, we consider the left inequality:

a2(hλ)2 + (a1 + a2)hλ + 2 ≥ 0 (16)

For hλ = 0, the above inequality is satisfied, further the discriminant is given by
(a1 + a2)

2 − 8a2 < 0. Here the last inequality follows from the given hypothesis.
Hence the left inequality in relation (15) is always satisfied. Next we consider the
right hand inequality of relation (15)

a2(hλ)2 + (a1 + a2)hλ ≤ 0. (17)

This relation is rearranged into

a2(hλ)2 ≤ −(a1 + a2)hλ, (18)

hence

a2|hλ|2 ≤ (a1 + a2)|hλ| ⇔ |hλ| ≤ a1 + a2

a2

, a2 6= 0. (19)

This results into the following condition for stability

h ≤ a1 + a2

a2|λ|
, a2 6= 0. (20)
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d The Jacobian, J , is given by

J =


∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2

 . (21)

Since f1(y1, y2) = −y1y2 and f2(y1, y2) = y1y2 − y2, we obtain

J =

(
−y2 −y1

y2 y1 − 1

)
. (22)

Substitution of the initial values y1(0) = 1 and y2(0) = 2, gives

J =

(
−2 −1
2 0

)
. (23)

e The eigenvalues of the Jacobian at y1(0) = y2(0) = 1 are given by λ1,2 = 1 ± i. For
our case, we have

Q(hλ) = −1 + hλ + 1/2(hλ)2. (24)

Since our eigenvalues are not real valued, it is required for stability that

|Q(hλ)| ≤ 1. (25)

Since the eigenvalues are complex conjugates, we can proceed with one of the eigen-
values, say λ = −1 + i with λ2 = −2i to obtain

Q(hλ) = 1 + h(−1 + i) + 1/2h2(−2i) (26)

Substitution of h = 1 shows that Q(hλ) = 0. This implies that |Q(hλ)| = 0 ≤ 1 so
the method is stable.

2. a Given v(x) = x(2 − x), then v′′(x) = −2, and hence −v′′ + v = 2 + x(2 − x)
follows by simple addition. Further, v(0) = 0 and v′(x) = 2 − 2x and hence
v′(1) = 0. Hence the differential equation, as well as the boundary conditions
are satisfied.

b Let vj = v(xj), and let xn = 1, hence h = 1/n, then

vj−1 = v(xj − h) = vj − hv′(xj) + h2/2v′′(xj)− h3/3!v′′′(xj) + h4/4!v′′′′(xj) + O(h5);

vj+1 = v(xj + h) = vj + hv′(xj) + h2/2v′′(xj) + h3/3!v′′′(xj) + h4/4!v′′′′(xj) + O(h5).
(27)

From the above expression, it can be seen that

v′′(xj) =
vj−1 − 2vj + vj+1

h2
+

h2

12
v′′′′(xj) + O(h3), (28)
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and hence the error is O(h2). This gives the following discretization

−wj−1 + 2wj − wj+1

h2
+ wj = 2 + xj(2− xj), for j = 1 . . . n, (29)

where xj = jh and wj ≈ vj as the numerical (finite difference) solution under
neglecting the error. Further, we use a virtual gridnode near x = 1, xn+1 = 1+h,
with

0 = v′(1) =
vn+1 − vn−1

2h
− h2

3
v′′′(1) + O(h3), (30)

hence the error is O(h2). Neglecting the error, and substitution into the dis-
cretization equation j = n, gives

−2wn−1 + 2wn

h2
+ wn = 3. (31)

Division by 2 to make the discretization symmetric, gives

−wn−1 + wn

h2
+

1

2
wn =

3

2
. (32)

The boundary condition at x = 0, gives

2w1 − w2

h2
+ w1 = 2 + h(2− h).. (33)

c For j = 1, we get, using h = 1/3,

18w1 − 9w2 + w1 = 2 + 1/3 ∗ 5/3 = 23/9. (34)

For j = 2, we obtain

−9w1 + 18w2 − 9w3 + w2 = 26/9. (35)

For j = 3 = n, we use w4 = w2, which gives

−9w2 + 9w3 + 1/2w3 = 3/2. (36)

Hence, the system of equations is
19w1 − 9w2 = 23/9,

−9w1 + 19w2 − 9w3 = 26/9,

−9w2 + 19/2w3 = 3/2.

(37)

d The exact solution is given by v(x) = x(2−x), and hence all derivatives of order
three and larger are zero. Further, the error is determined by the derivatives of
third order and larger. This implies that the error is zero.
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e To this extent, we consider the determination of the zeros of the following system
of equations 

F1(v1, v2) = 18v1 − 9v2 + v2
1 − 20

9
,

F2(v1, v2) = −9v1 + 18v2 + v2
2 − 20

9
.

We consider (vk
1 , v

k
2) as the kth estimate of the successive approximations. Lin-

earization around the estimate (vk
1 , v

k
2) gives the following Newton method:

∂(F1, F2)

∂(v1, v2)
(vk

1 , v
k
2)

vk+1
1 − vk

1

vk+1
2 − vk

2

 = −F (vk
1 , v

k
2), (38)

where F (v1, v2) = [F1(v1, v2) F2(v1, v2)]
T , and

∂(F1, F2)

∂(v1, v2)
(vk

1 , v
k
2) =

∂F1

∂v1
(vk

1 , v
k
2)

∂F1

∂v2
(vk

1 , v
k
2)

∂F2

∂v1
(vk

1 , v
k
2)

∂F2

∂v2
(vk

1 , v
k
2)

 =

18 + 2vk
1 −9

−9 18 + 2vk
2

 ,

(39)
is the Jacobian matrix. Using v0

1 = v0
2 = 0, we get18 −9

−9 18

 v1
1 − v0

1

v1
2 − v0

2

 =

20/9

20/9

 . (40)

The solution is given by v1
1 − v0

1 = 20/81 = v1
2 − v0

2, and hence v1
1 = v1

2 = 20/81.
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