DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday June 30 2011, 18:30-21:30

1. a The local truncation error is defined by

$$
\begin{equation*}
\tau_{h}=\frac{y_{n+1}-z_{n+1}}{h} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) \tag{2}
\end{equation*}
$$

for the forward Euler method. A Taylor expansion for y_{n+1} around t_{n} is given by

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}(\xi), \quad \exists \xi \in\left(t_{n}, t_{n+1}\right) . \tag{3}
\end{equation*}
$$

Since $y^{\prime}\left(t_{n}\right)=f\left(t_{n}, y_{n}\right)$, we use equation (1), to get

$$
\begin{equation*}
\tau_{h}=\frac{h}{2} y^{\prime \prime}(\xi), \quad \exists \xi \in\left(t_{n}, t_{n+1}\right) . \tag{4}
\end{equation*}
$$

Hence, the truncation error is of first order.
b We define $y_{1}:=y$ and $y_{2}:=y^{\prime}$, hence $y_{1}^{\prime}=y_{2}$. Further, we use the differential equation to obtain

$$
\begin{equation*}
y^{\prime \prime}+\varepsilon y^{\prime}+y=y_{1}^{\prime \prime}+\varepsilon y_{1}^{\prime}+y_{1}=y_{2}^{\prime}+\varepsilon y_{2}+y_{1} . \tag{5}
\end{equation*}
$$

Hence, we obtain

$$
\begin{equation*}
y_{2}^{\prime}=-y_{1}-\varepsilon y_{2}+\sin (t) . \tag{6}
\end{equation*}
$$

Hence the system is given by

$$
\begin{align*}
& y_{1}^{\prime}=y_{2} \tag{7}\\
& y_{2}^{\prime}=-y_{1}-\varepsilon y_{2}+\sin (t) .
\end{align*}
$$

The initial conditions are given by

$$
\begin{align*}
& 1=y(0)=y_{1}(0), \\
& 0=y^{\prime}(0)=y_{1}^{\prime}(0)=y_{2}(0) . \tag{8}
\end{align*}
$$

c First, we use the test equation, $y^{\prime}=\lambda y$, to analyze numerical stability. For forward Euler, we obtain

$$
\begin{equation*}
w_{n+1}=w_{n}+h \lambda w_{n}=Q(h \lambda) w_{n} \tag{9}
\end{equation*}
$$

hence the amplification factor becomes

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda \tag{10}
\end{equation*}
$$

The numerical solution is stable if and only if $|Q(h \lambda)| \leq 1$. Next, we deal with the case $\varepsilon=0$, to obtain the following system

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
0 & -1 \tag{11}\\
1 & 0
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

This system gives the following eigenvalues $\lambda_{1,2}= \pm i$, where i is the imaginary unit. Hence, the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1 \pm h i \tag{12}
\end{equation*}
$$

Then, it is immediately clear that $|Q(h \lambda)|>1$ for all $h>0$. Hence, we conclude that the forward Euler method is never stable if $\varepsilon=0$.
d From Assignment 1.c., we know that if $\varepsilon=0$, the eigenvalues of the system are purely imaginary. This implies that the system is analytically (zero) stable if $\varepsilon=0$.

Nonzero values of ε give the following system

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
0 & -1 \tag{13}\\
1 & \varepsilon
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

then we get the following eigenvalues $\lambda_{1,2}=\frac{\varepsilon}{2} \pm \frac{1}{2} \sqrt{\varepsilon^{2}-4}$ (real-valued), if $\varepsilon^{2}-4 \geq 0$ and $\lambda=\frac{\varepsilon}{2} \pm \frac{i}{2} \sqrt{4-\varepsilon^{2}}$ (nonreal-valued) if $\varepsilon^{2}-4<0$. Hence, we consider two cases: real-valued and nonreal-valued eigenvalues.

Real-valued eigenvalues

In this case $|\varepsilon| \geq 2$, and $0 \leq \varepsilon^{2}-4<\varepsilon^{2}$, and hence the real-valued eigenvalues have the same sign, which is determined by the sign of ε. Hence, if $\varepsilon \leq-2$, then, the system is stable. Furthermore, if $\varepsilon \geq 2$, then, the system is unstable.

Nonreal-valued eigenvalues
In this case $|\varepsilon|<2$. The system is analytically unstable if and only if the real part of the eigenvalues is positive. Further, the real part of the eigenvalues is positive if and only if $\varepsilon>0$. Hence, the system is analytically unstable if and only if $\varepsilon>0$. Hence, the system is stable if and only if $(-2<) \varepsilon \leq 0$.

From these arguments, it follows that the system is stable if and only if $\varepsilon \leq 0$.
e Since currently the discriminant, $\varepsilon^{2}-4$, is negative, the eigenvalues are nonreal. Substitution into the amplification factor yields

$$
\begin{equation*}
Q(h \lambda)=1+\frac{\varepsilon}{2} h \pm \frac{i h}{2} \sqrt{4-\varepsilon^{2}} . \tag{14}
\end{equation*}
$$

Hence, numerical stability is warranted if

$$
\begin{equation*}
|Q(h \lambda)|^{2}=\left(1+\frac{\varepsilon}{2} h\right)^{2}+\frac{h^{2}}{4}\left(4-\varepsilon^{2}\right) \leq 1 \tag{15}
\end{equation*}
$$

Hence for stability, we have

$$
\begin{equation*}
1+\varepsilon h+\frac{\varepsilon^{2} h^{2}}{4}+h^{2}-\frac{\varepsilon^{2} h^{2}}{4}=1+h \varepsilon+h^{2} \leq 1 \tag{16}
\end{equation*}
$$

Since $h>0$, we obtain the following stability criterion

$$
\begin{equation*}
h \leq-\varepsilon=|\varepsilon| . \tag{17}
\end{equation*}
$$

If $\varepsilon=-2$, then both eigenvalues are real-valued and given by $\lambda_{1,2}=-1$. For this case, we obtain $Q(\lambda h)=1-h$, and stability is warranted if and only if $-1 \leq Q(h \lambda) \leq 1$, hence $h \leq 2(=|\varepsilon|$.

We conclude that for $-2 \leq \varepsilon<0$, we have a numerically stable solution if and only if $h \leq|\varepsilon|$.
2. a After discretization by the use of finite differences one obtains

$$
\begin{equation*}
\frac{-w_{i-1}+2 w_{i}-w_{i+1}}{h^{2}}+x_{i}^{2} w_{i}=x_{i} . \tag{18}
\end{equation*}
$$

The truncation error is defined by

$$
\begin{equation*}
e_{i}=\frac{-y_{i-1}+2 y_{i}-y_{i+1}}{h^{2}}+x_{i}^{2} y_{i}-x_{i} \tag{19}
\end{equation*}
$$

Taylor series of y_{i-1} and y_{i+1} around x_{i}, gives

$$
\begin{align*}
& y_{i+1}=y_{i}+h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(x_{i}\right)+O\left(h^{5}\right), \\
& y_{i-1}=y_{i}-h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)-\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(x_{i}\right)-O\left(h^{5}\right), \tag{20}
\end{align*}
$$

Substitution of the above expressions into the definition of the truncation error gives

$$
\begin{equation*}
\varepsilon_{i}=-y^{\prime \prime}\left(x_{i}\right)+O\left(h^{2}\right)+x_{i}^{2} y\left(x_{i}\right)-x_{i} . \tag{21}
\end{equation*}
$$

Using the differential equation $-y^{\prime \prime}+x^{2} y=x$ finally gives

$$
\begin{equation*}
\varepsilon_{i}=O\left(h^{2}\right) \tag{22}
\end{equation*}
$$

b For this case we have $h=0.25$, for the points $j \in\{1,2,3\}$, the discretization with $w_{0}=0$ and $w_{4}=1$:

$$
\begin{align*}
& 32 w_{1}-16 w_{2}+\frac{1}{16} w_{1}=\frac{1}{4} \\
& -16 w_{1}+32 w_{2}-16 w_{3}+\frac{1}{4} w_{2}=\frac{1}{2} \tag{23}\\
& -16 w_{2}+32 w_{3}+\frac{9}{16} w_{3}=\frac{3}{4}+16
\end{align*}
$$

Hence in matrix-vector form:

$$
\left(\begin{array}{ccc}
32.0625 & -16 & 0 \tag{24}\\
-16 & 32.25 & -16 \\
0 & -16 & 32.5625
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{c}
0.25 \\
0.5 \\
16.75
\end{array}\right)
$$

c The iteration process is a fixed point method. If the process converges we have: $\lim _{n \rightarrow \infty} x_{n}=p$. Using this in the iteration process yields:

$$
\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty}\left[x_{n}+h\left(x_{n}\right)\left(x_{n}^{2}-4\right)\right]
$$

Since h is a continuous function one obtains:

$$
p=p+h(p)\left(p^{2}-4\right)
$$

so

$$
h(p)\left(p^{2}-4\right)=0
$$

Since $h(x) \neq 0$ for each $x \neq 0$ it follows that $p^{2}-4=0$ and thus there are two limits $p=-2$ and $p=2$.
d The convergence of a fixed point method $x_{n+1}=g\left(x_{n}\right)$ is determined by $g^{\prime}(p)$. If $\left|g^{\prime}(p)\right|<1$ the method converges, whereas if $\left|g^{\prime}(p)\right|>1$ the method diverges if $p_{0} \neq p$. For all choices we compute the first derivative in p. For the first method we elaborate all steps. For the other methods we only give the final result. For h_{1} we have $g_{1}(x)=x-\frac{1}{2} x\left(x^{2}-4\right)=3 x-\frac{1}{2} x^{3}$. The first derivative is:

$$
g_{1}^{\prime}(x)=3-\frac{3}{2} x^{2}
$$

Substitution of $p=2$ yields:

$$
g_{1}^{\prime}(2)=3-\frac{3}{2} 4=3-6=-3
$$

Since $\left|g_{1}^{\prime}(2)\right|=3>1$ this method is divergent.
For the second method we have:

$$
g_{2}(x)=x-\frac{1}{3}\left(x^{2}-4\right)
$$

$$
g_{2}^{\prime}(x)=1-\frac{2}{3} x
$$

Since $\left|g_{2}^{\prime}(2)\right|=\left|-\frac{1}{3}\right|=\frac{1}{3}<1$ the method converges with convergence factor $\frac{1}{3}$.
For the third method we have:

$$
\begin{gathered}
g_{3}(x)=x-\frac{1}{2 x}\left(x^{2}-4\right)=\frac{x}{2}+\frac{2}{x} \\
g_{3}^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}}
\end{gathered}
$$

Note that $g_{3}^{\prime}(2)=\frac{1}{2}-\frac{2}{4}=0$ the method is convergent with convergence factor 0 .

Concluding we note that the third method is the fastest since $\left|g_{3}^{\prime}(2)\right|<\left|g_{2}^{\prime}(2)\right|$.
e We use the iteration process:

$$
x_{n+1}=x_{n}-\frac{1}{3}\left(x_{n}^{2}-4\right)
$$

Starting from $x_{0}=3$ we obtain the following iterates:

$$
\begin{aligned}
& x_{1}=1.3333 \\
& x_{2}=2.0741 \\
& x_{3}=1.9735
\end{aligned}
$$

Note that the method indeed converges and that the convergence is alternating.
f To estimate the error in p we first approximate the function f in the neighboorhood of p by the first order Taylor polynomial:

$$
P_{1}(x)=f(p)+(x-p) f^{\prime}(p)=(x-p) f^{\prime}(p)
$$

Due to the measurement errors we know that

$$
(x-p) f^{\prime}(p)-\epsilon_{\max } \leq \hat{P}_{1}(x) \leq(x-p) f^{\prime}(p)+\epsilon_{\max }
$$

This implies that the perturbed root \hat{p} is bounded by the roots of $(x-p) f^{\prime}(p)-$ $\epsilon_{\max }$ and $(x-p) f^{\prime}(p)+\epsilon_{\max }$, which leads to

$$
p-\frac{\epsilon_{\max }}{\left|f^{\prime}(p)\right|} \leq \hat{p} \leq p+\frac{\epsilon_{\max }}{\left|f^{\prime}(p)\right|}
$$

