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1. a The local truncation error is defined by

τh =
yn+1 − zn+1

h
, (1)

where
zn+1 = yn + hf(tn, yn), (2)

for the forward Euler method. A Taylor expansion for yn+1 around tn is given
by

yn+1 = yn + hy′(tn) +
h2

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (3)

Since y′(tn) = f(tn, yn), we use equation (1), to get

τh =
h

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (4)

Hence, the truncation error is of first order.

b We define y1 := y and y2 := y′, hence y′1 = y2. Further, we use the differential
equation to obtain

y′′ + εy′ + y = y′′1 + εy′1 + y1 = y′2 + εy2 + y1. (5)

Hence, we obtain
y′2 = −y1 − εy2 + sin(t). (6)

Hence the system is given by

y′1 = y2,
y′2 = −y1 − εy2 + sin(t).

(7)

The initial conditions are given by

1 = y(0) = y1(0),
0 = y′(0) = y′1(0) = y2(0).

(8)
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c First, we use the test equation, y′ = λy, to analyze numerical stability. For
forward Euler, we obtain

wn+1 = wn + hλwn = Q(hλ)wn, (9)

hence the amplification factor becomes

Q(hλ) = 1 + hλ. (10)

The numerical solution is stable if and only if |Q(hλ)| ≤ 1. Next, we deal with
the case ε = 0, to obtain the following system(

y′1
y′2

)
=

(
0 −1
1 0

) (
y1

y2

)
. (11)

This system gives the following eigenvalues λ1,2 = ±i, where i is the imaginary
unit. Hence, the amplification factor is given by

Q(hλ) = 1± hi. (12)

Then, it is immediately clear that |Q(hλ)| > 1 for all h > 0. Hence, we conclude
that the forward Euler method is never stable if ε = 0.

d From Assignment 1.c., we know that if ε = 0, the eigenvalues of the system are
purely imaginary. This implies that the system is analytically (zero) stable if
ε = 0.

Nonzero values of ε give the following system(
y′1
y′2

)
=

(
0 −1
1 ε

) (
y1

y2

)
. (13)

then we get the following eigenvalues λ1,2 = ε
2
± 1

2

√
ε2 − 4 (real-valued), if

ε2 − 4 ≥ 0 and λ = ε
2
± i

2

√
4− ε2 (nonreal-valued) if ε2 − 4 < 0. Hence,

we consider two cases: real-valued and nonreal-valued eigenvalues.

Real-valued eigenvalues
In this case |ε| ≥ 2, and 0 ≤ ε2 − 4 < ε2, and hence the real-valued eigenvalues
have the same sign, which is determined by the sign of ε. Hence, if ε ≤ −2,
then, the system is stable. Furthermore, if ε ≥ 2, then, the system is unstable.

Nonreal-valued eigenvalues
In this case |ε| < 2. The system is analytically unstable if and only if the real
part of the eigenvalues is positive. Further, the real part of the eigenvalues is
positive if and only if ε > 0. Hence, the system is analytically unstable if and
only if ε > 0. Hence, the system is stable if and only if (−2 <)ε ≤ 0.

From these arguments, it follows that the system is stable if and only if ε ≤ 0.
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e Since currently the discriminant, ε2−4, is negative, the eigenvalues are nonreal.
Substitution into the amplification factor yields

Q(hλ) = 1 +
ε

2
h± ih

2

√
4− ε2. (14)

Hence, numerical stability is warranted if

|Q(hλ)|2 = (1 +
ε

2
h)2 +

h2

4
(4− ε2) ≤ 1. (15)

Hence for stability, we have

1 + εh +
ε2h2

4
+ h2 − ε2h2

4
= 1 + hε + h2 ≤ 1. (16)

Since h > 0, we obtain the following stability criterion

h ≤ −ε = |ε|. (17)

If ε = −2, then both eigenvalues are real-valued and given by λ1,2 = −1. For
this case, we obtain Q(λh) = 1 − h, and stability is warranted if and only if
−1 ≤ Q(hλ) ≤ 1, hence h ≤ 2(= |ε|.

We conclude that for −2 ≤ ε < 0, we have a numerically stable solution if and
only if h ≤ |ε|.

2. a After discretization by the use of finite differences one obtains

−wi−1 + 2wi − wi+1

h2
+ x2

i wi = xi. (18)

The truncation error is defined by

ei =
−yi−1 + 2yi − yi+1

h2
+ x2

i yi − xi. (19)

Taylor series of yi−1 and yi+1 around xi, gives

yi+1 = yi + hy′(xi) +
h2

2!
y′′(xi) +

h3

3!
y′′′(xi) +

h4

4!
y′′′′(xi) + O(h5),

yi−1 = yi − hy′(xi) +
h2

2!
y′′(xi)−

h3

3!
y′′′(xi) +

h4

4!
y′′′′(xi)−O(h5),

(20)

Substitution of the above expressions into the definition of the truncation error
gives

εi = −y′′(xi) + O(h2) + x2
i y(xi)− xi. (21)

Using the differential equation −y′′ + x2y = x finally gives

εi = O(h2). (22)
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b For this case we have h = 0.25, for the points j ∈ {1, 2, 3}, the discretization
with w0 = 0 and w4 = 1:

32w1 − 16w2 +
1

16
w1 =

1

4
,

−16w1 + 32w2 − 16w3 +
1

4
w2 =

1

2
,

−16w2 + 32w3 +
9

16
w3 =

3

4
+ 16.

(23)

Hence in matrix-vector form:32.0625 −16 0
−16 32.25 −16
0 −16 32.5625

 w1

w2

w3

 =

 0.25
0.5

16.75

 (24)

c The iteration process is a fixed point method. If the process converges we have:
limn→∞ xn = p. Using this in the iteration process yields:

lim
n→∞

xn+1 = lim
n→∞

[xn + h(xn)(x2
n − 4)]

Since h is a continuous function one obtains:

p = p + h(p)(p2 − 4)

so
h(p)(p2 − 4) = 0.

Since h(x) 6= 0 for each x 6= 0 it follows that p2 − 4 = 0 and thus there are two
limits p = −2 and p = 2.

d The convergence of a fixed point method xn+1 = g(xn) is determined by g′(p).
If |g′(p)| < 1 the method converges, whereas if |g′(p)| > 1 the method diverges if
p0 6= p. For all choices we compute the first derivative in p. For the first method
we elaborate all steps. For the other methods we only give the final result. For
h1 we have g1(x) = x− 1

2
x(x2 − 4) = 3x− 1

2
x3. The first derivative is:

g′1(x) = 3− 3

2
x2

Substitution of p = 2 yields:

g′1(2) = 3− 3

2
4 = 3− 6 = −3.

Since |g′1(2)| = 3 > 1 this method is divergent.

For the second method we have:

g2(x) = x− 1

3
(x2 − 4)
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g′2(x) = 1− 2

3
x

Since |g′2(2)| = | − 1
3
| = 1

3
< 1 the method converges with convergence factor 1

3
.

For the third method we have:

g3(x) = x− 1

2x
(x2 − 4) =

x

2
+

2

x

g′3(x) =
1

2
− 2

x2

Note that g′3(2) = 1
2
− 2

4
= 0 the method is convergent with convergence factor

0.

Concluding we note that the third method is the fastest since |g′3(2)| < |g′2(2)|.
e We use the iteration process:

xn+1 = xn −
1

3
(x2

n − 4)

Starting from x0 = 3 we obtain the following iterates:

x1 = 1.3333

x2 = 2.0741

x3 = 1.9735

Note that the method indeed converges and that the convergence is alternating.

f To estimate the error in p we first approximate the function f in the neighboor-
hood of p by the first order Taylor polynomial:

P1(x) = f(p) + (x− p)f ′(p) = (x− p)f ′(p).

Due to the measurement errors we know that

(x− p)f ′(p)− εmax ≤ P̂1(x) ≤ (x− p)f ′(p) + εmax.

This implies that the perturbed root p̂ is bounded by the roots of (x−p)f ′(p)−
εmax and (x− p)f ′(p) + εmax, which leads to

p− εmax

|f ′(p)|
≤ p̂ ≤ p +

εmax

|f ′(p)|
.
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