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1. (a) The local truncation error is given by

n — Zn
Tn+1(h) _ Yn+1 - +17

in which we determine y,,,1 by the use of Taylor expansions around t,:

2

h
Yn+1 = Yn + hy/(tn) + ?y”(tn) + O(h3>

We bear in mind that

y/(tn) = f(tm yn)
df (tn, Yn Of (tn, Yn Of (tn,yn) ,
(L) = f(tdty ) _ f(fi%y)+ f(tayy )y(tn):
Of (tnsyn) | Of (tn; yn)
ot + By f(tn, yn).

Hence
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After substitution of the predictor z
after using a Taylor expansion around (¢,,y,), we obtain for z,;

Zntl = Yn + % (f s yn) + f(tn + By + f (tn, yn))) =

Of (tn, yn)
ot

Of (tn: yn)

Yn + ﬁ (f(trwyn) + [t yn) + I(
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Herewith, one obtains

Yns1 — Zns1 = O(h?), and hence 7,,1(h) =

f<tn,yn>) Lo, ()

1= Yn+hf(tn, yn) into the corrector, and
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(b) Let x Y and i) Y then Y Ty and hence

zh + 4dxy + 31 = cos(t),

Ty = 2. (7)
We write this as /
Il = I‘Q,
xhy = —3x1 — 4wy + cos(t). (8)

Finally, this is represented in the following matrix-vector form:

() = (5 1) () () 0

0 1 0

In which, we have the following matrix A = 3 _4 and f = cos(t)

The initial conditions are defined by (961(0) ) = (1) .

Application of the Modified Euler method to the system 2’ = Az + f, gives
—w, +h <Aw +f ) ,
b (10)
w, = w, %(Aw0+fo+AQ’{+il).

With the initial condition w, = (2) and h = 0.1, this gives the following result
for the predictor

a0 (5 D0 )0 o

The corrector is calculated as follows

w= ()5 (S )0+ O+ (5% 1))+ () -

(11500
— \1.1698

(12)
Consider the test equation ¢y’ = Ay, then one gets
Wy = Wy + hAw, = (1 + hX)w,,
h
Wpy1 = Wy + §(Awn + Awy ) = (13)
h (hA)?
= w, + E()\wn + Mwy, + hAwy,)) = (1 + hA + 5 Jwp,.
Hence the amplification factor is given by
h)\)?
Q(h)\):1+h)\+( 2) . (14)



(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenval-
ues are substituted into the amplification factor. The eigenvalues of the matrix
A are given by \; = —1 and Ay = —3. We first check the amplification factor
of /\1 =—-1:

1
—1§1—h+§h2§1 (15)

The first inequality leads to
Ly
0<2—-h+ §h

Since the discriminant of this equation is equal to 1 —4x % *x2 = —3 the inequality
always holds. The second inequality leads to

1
—h+=h*<0

+ St =
SO

—h*<h
which implies

h <2
Now we check the amplification factor of Ay = —3:

1
—1§1—3h+§9h2§1 (16)

The first inequality leads to
Lo
0<2—-3h+ §9h

Since the discriminant of this equation is equal to 9 — 4 % x 2 = —27 the
inequality always holds. The second inequality leads to

—3h + 22 <0
2
SO 5
“h*<h
2
which implies
2
h<=
-3

So the modified Euler method is stable if A < %



2.

(a) We have to check whether the requirements for the Convergence Theorem (see

Theorem 4.3.2 in Vuik et al.) on convergence are satisfied. We have to remark
that these requirements give a sufficient condition for convergence to the fixed
point if we choose an initial value in a neighborhood around the fixed point p.
The theorem is formulated as follows:

Theorem: If there exists a 6 > 0 such that g(x) € C'[p — §,p + 8] (the first
order derivative of g(x) is continuous), then, the fixed point method converges
for each initial value py € [p — 0, p + 8] if the following hypotheses are satisfied:

1. There exists ar > 0 such that

ld'(x)| <r <1, forzep—34p+94|

Firstly, the derivative of g(x) is given by

f'(@)
() =1— .
g'(x) -
Further, we have
/'(p) /')
/
g(p =1- >1— =0,
) a /'(p)
since 0 < f'(p) < a. From this, it also follows that
/!
P
g’(p)zl—fé) <1,

since f'(p) > 0 and @ > 0. When we combine these bounds for the derivative of
¢’ with continuity of f’(z), and hence also with continuity of ¢’(x) around p, it
follows that there is a neighborhood around p for which we have 0 < ¢'(z) < 1.
In other words, mathematically speaking: There exists a 6 > 0 for which 0 <
g'(z) < 1for each x € [p—0,p+6]. Hence the first hypothesis of the convergence
theorem is satisfied.

Further, via the Mean Value Theorem, we get
9(p+6) =g(p) +69'(&), fora & € (p—0d,p+9) and,
g(p—0) =g(p) —3g'(&), fora & € (p—0,p+9).
This yields with 0 < ¢’(§) < 1 and g(p) = p:

g(p—0)=g(p) —0g'(&1) >p—06, and g(p+ ) = g(p) + 0’ (&) < p+ 9.

Hence, we have g(p+0) € [p—d, p+9]. Since g(z) is monotonical on [p— 4, p+9],
g(x) cannot assume any values outside the range [p—0,p+4] if x € [p—4, p+4].
Hence, we have

g(.fE) € [p_67p+5]a for = € [p_57p+5]a
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which is equivalent to the second hypothesis. This all sustains convergence if
the initial guess is chosen within a neighborhood around the fixed point p.

(b) The method of Newton-Raphson is based on linearization around the iterate p;,.
This is given by

L(z) = f(pn) + (@ = pu) f'(Pn)- (17)
Next, we determine p,, ;1 such that L(p,y1) = 0, that is
f(pn)

f(pn) + (pn+1 - pn)f/(pn) =0< Pnt+1 = Pn — f/(pn>’

This result can also be proved graphically, see book, chapter 4.
(c) We have f(x) =2? —2x — 2, so f/(x) = 2z — 2 and hence

P2 —2p, — 2

Pn+1 = Pn — 2pn —9

With the initial value py = 2, this gives

5 4—4-—-2 5

p1 = 1_o2

(d) We have f’(x) = 2x — 2 and hence f’(1) = 0 with starting value po = 1. In the
recursion, one divides by zero. Division by zero does not make any sense, so
po = 1 is not a suitable starting value. Geometrically, one may remark that the
tangent is horizontal on py = 1.

(e) We answer both questions sequentially:
- The linear interpolation polynomial with points xy en x; is given by:

r — T r — X

———y(w) = = —(p=1)+3(r-2/3) = 22-1. (19)

Pi(z) = y(zo)

- We have Py(z) = 1/2 < 2z — 1 = 1/2. Solution of this equation in x gives
3



