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1. (a) The local truncation error is given by

τn+1(h) =
yn+1 − zn+1

h
, (1)

in which we determine yn+1 by the use of Taylor expansions around tn:

yn+1 = yn + hy′(tn) +
h2

2
y′′(tn) + O(h3). (2)

We bear in mind that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
y′(tn) =

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn).

(3)

Hence

yn+1 = yn + hy′(tn) +
h2

2

(

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn)

)

+ O(h3). (4)

After substitution of the predictor z∗
n+1 = yn +hf(tn, yn) into the corrector, and

after using a Taylor expansion around (tn, yn), we obtain for zn+1

zn+1 = yn + h

2
(f(tn, yn) + f(tn + h, yn + hf(tn, yn))) =

yn +
h

2

(

f(tn, yn) + f(tn, yn) + h(
∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
) + O(h2)

)

.

(5)
Herewith, one obtains

yn+1 − zn+1 = O(h3), and hence τn+1(h) =
O(h3)

h
= O(h2). (6)
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(b) Let x1 = y and x2 = y′, then y′′ = x′

2, and hence

x′

2 + 4x2 + 3x1 = cos(t),
x2 = x′

1.
(7)

We write this as
x′

1 = x2,
x′

2 = −3x1 − 4x2 + cos(t).
(8)

Finally, this is represented in the following matrix-vector form:
(

x1

x2

)

′

=

(

0 1
−3 −4

) (

x1

x2

)

+

(

0
cos(t)

)

. (9)

In which, we have the following matrix A =

(

0 1
−3 −4

)

and f =

(

0
cos(t)

)

.

The initial conditions are defined by

(

x1(0)
x2(0)

)

=

(

1
2

)

.

(c) Application of the Modified Euler method to the system x′ = Ax + f , gives

w∗

1 = w0 + h
(

Aw0 + f
0

)

,

w1 = w0 + h

2

(

Aw0 + f0 + Aw∗

1 + f
1

)

.
(10)

With the initial condition w0 =

(

1
2

)

and h = 0.1, this gives the following result

for the predictor

w∗

1 =

(

1
2

)

+
1

10

((

0 1
−3 −4

) (

1
2

)

+

(

0
1

))

=

(

6/5
1

)

. (11)

The corrector is calculated as follows

w1 =

(

1
2

)

+ 1

20

((

0 1
−3 −4

) (

1
2

)

+

(

0
1

)

+

(

0 1
−3 −4

) (

6/5
1

)

+

(

0
cos( 1

10
)

))

=

=

(

1.1500
1.1698

)

(12)

(d) Consider the test equation y′ = λy, then one gets

w∗

n+1 = wn + hλwn = (1 + hλ)wn,

wn+1 = wn +
h

2
(λwn + λw∗

n+1) =

= wn +
h

2
(λwn + λ(wn + hλwn)) = (1 + hλ +

(hλ)2

2
)wn.

(13)

Hence the amplification factor is given by

Q(hλ) = 1 + hλ +
(hλ)2

2
. (14)
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(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenval-
ues are substituted into the amplification factor. The eigenvalues of the matrix
A are given by λ1 = −1 and λ2 = −3. We first check the amplification factor
of λ1 = −1:

−1 ≤ 1 − h +
1

2
h2 ≤ 1 (15)

The first inequality leads to

0 ≤ 2 − h +
1

2
h2

Since the discriminant of this equation is equal to 1−4∗ 1

2
∗2 = −3 the inequality

always holds. The second inequality leads to

−h +
1

2
h2 ≤ 0

so
1

2
h2 ≤ h

which implies
h ≤ 2

Now we check the amplification factor of λ2 = −3:

−1 ≤ 1 − 3h +
1

2
9h2 ≤ 1 (16)

The first inequality leads to

0 ≤ 2 − 3h +
1

2
9h2

Since the discriminant of this equation is equal to 9 − 4 ∗ 9

2
∗ 2 = −27 the

inequality always holds. The second inequality leads to

−3h +
9

2
h2 ≤ 0

so
3

2
h2 ≤ h

which implies

h ≤
2

3

So the modified Euler method is stable if h ≤ 2

3
.

3



2. (a) We have to check whether the requirements for the Convergence Theorem (see
Theorem 4.3.2 in Vuik et al.) on convergence are satisfied. We have to remark
that these requirements give a sufficient condition for convergence to the fixed
point if we choose an initial value in a neighborhood around the fixed point p.
The theorem is formulated as follows:

Theorem: If there exists a δ > 0 such that g(x) ∈ C1[p − δ, p + δ] (the first
order derivative of g(x) is continuous), then, the fixed point method converges
for each initial value p0 ∈ [p − δ, p + δ] if the following hypotheses are satisfied:

i. g : [p − δ, p + δ] −→ [p − δ, p + δ];

ii. There exists a r > 0 such that

|g′(x)| ≤ r < 1, for x ∈ [p − δ, p + δ].

Firstly, the derivative of g(x) is given by

g′(x) = 1 −
f ′(x)

α
.

Further, we have

g′(p) = 1 −
f ′(p)

α
> 1 −

f ′(p)

f ′(p)
= 0,

since 0 < f ′(p) < α. From this, it also follows that

g′(p) = 1 −
f ′(p)

α
< 1,

since f ′(p) > 0 and α > 0. When we combine these bounds for the derivative of
g′ with continuity of f ′(x), and hence also with continuity of g′(x) around p, it
follows that there is a neighborhood around p for which we have 0 < g′(x) < 1.
In other words, mathematically speaking: There exists a δ > 0 for which 0 <
g′(x) < 1 for each x ∈ [p−δ, p+δ]. Hence the first hypothesis of the convergence
theorem is satisfied.

Further, via the Mean Value Theorem, we get

g(p + δ) = g(p) + δg′(ξ1), for a ξ1 ∈ (p − δ, p + δ) and,

g(p − δ) = g(p) − δg′(ξ2), for a ξ2 ∈ (p − δ, p + δ).

This yields with 0 < g′(ξ) < 1 and g(p) = p:

g(p − δ) = g(p) − δg′(ξ1) > p − δ, and g(p + δ) = g(p) + δg′(ξ2) < p + δ.

Hence, we have g(p±δ) ∈ [p−δ, p+δ]. Since g(x) is monotonical on [p−δ, p+δ],
g(x) cannot assume any values outside the range [p−δ, p+δ] if x ∈ [p−δ, p+δ].
Hence, we have

g(x) ∈ [p − δ, p + δ], for x ∈ [p − δ, p + δ],
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which is equivalent to the second hypothesis. This all sustains convergence if
the initial guess is chosen within a neighborhood around the fixed point p.

(b) The method of Newton-Raphson is based on linearization around the iterate pn.
This is given by

L(x) = f(pn) + (x − pn)f ′(pn). (17)

Next, we determine pn+1 such that L(pn+1) = 0, that is

f(pn) + (pn+1 − pn)f ′(pn) = 0 ⇔ pn+1 = pn −
f(pn)

f ′(pn)
, f ′(pn) 6= 0. (18)

This result can also be proved graphically, see book, chapter 4.

(c) We have f(x) = x2 − 2x − 2, so f ′(x) = 2x − 2 and hence

pn+1 = pn −
p2

n
− 2pn − 2

2pn − 2
.

With the initial value p0 = 2, this gives

p1 = 2 −
4 − 4 − 2

4 − 2
= 3.

(d) We have f ′(x) = 2x − 2 and hence f ′(1) = 0 with starting value p0 = 1. In the
recursion, one divides by zero. Division by zero does not make any sense, so
p0 = 1 is not a suitable starting value. Geometrically, one may remark that the
tangent is horizontal on p0 = 1.

(e) We answer both questions sequentially:

- The linear interpolation polynomial with points x0 en x1 is given by:

P1(x) = y(x0)
x − x1

x0 − x1

+y(x1)
x − x0

x1 − x0

= −(x−1)+3(x−2/3) = 2x−1. (19)

- We have P1(x) = 1/2 ⇔ 2x − 1 = 1/2. Solution of this equation in x gives
x = 3

4
.
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