DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday January 20 2011, 18:30-21:30

1. (a) The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h}, \tag{1}
\end{equation*}
$$

in which we determine y_{n+1} by the use of Taylor expansions around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) \tag{2}
\end{equation*}
$$

We bear in mind that

$$
\begin{gather*}
y^{\prime}\left(t_{n}\right) \\
y^{\prime \prime}\left(t_{n}\right)=\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right)= \tag{3}\\
\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) .
\end{gather*}
$$

Hence

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2}\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right)\right)+O\left(h^{3}\right) \tag{4}
\end{equation*}
$$

After substitution of the predictor $z_{n+1}^{*}=y_{n}+h f\left(t_{n}, y_{n}\right)$ into the corrector, and after using a Taylor expansion around $\left(t_{n}, y_{n}\right)$, we obtain for z_{n+1}

$$
\begin{align*}
& z_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right)= \\
& y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n}, y_{n}\right)+h\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+f\left(t_{n}, y_{n}\right) \frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y}\right)+O\left(h^{2}\right)\right) . \tag{5}
\end{align*}
$$

Herewith, one obtains

$$
\begin{equation*}
y_{n+1}-z_{n+1}=O\left(h^{3}\right), \text { and hence } \tau_{n+1}(h)=\frac{O\left(h^{3}\right)}{h}=O\left(h^{2}\right) . \tag{6}
\end{equation*}
$$

(b) Let $x_{1}=y$ and $x_{2}=y^{\prime}$, then $y^{\prime \prime}=x_{2}^{\prime}$, and hence

$$
\begin{align*}
& x_{2}^{\prime}+4 x_{2}+3 x_{1}=\cos (t), \tag{7}\\
& x_{2}=x_{1}^{\prime}
\end{align*}
$$

We write this as

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \\
& x_{2}^{\prime}=-3 x_{1}-4 x_{2}+\cos (t) . \tag{8}
\end{align*}
$$

Finally, this is represented in the following matrix-vector form:

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{9}\\
-3 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos (t)} .
$$

In which, we have the following matrix $A=\left(\begin{array}{cc}0 & 1 \\ -3 & -4\end{array}\right)$ and $f=\binom{0}{\cos (t)}$. The initial conditions are defined by $\binom{x_{1}(0)}{x_{2}(0)}=\binom{1}{2}$.
(c) Application of the Modified Euler method to the system $\underline{x}^{\prime}=A \underline{x}+\underline{f}$, gives

$$
\begin{align*}
& \underline{w}_{1}^{*}=\underline{w}_{0}+h\left(A \underline{w}_{0}+\underline{f}_{0}\right) \tag{10}\\
& \underline{w}_{1}=\underline{w}_{0}+\frac{h}{2}\left(A \underline{w}_{0}+f_{0}+A \underline{w}_{1}^{*}+\underline{f}_{1}\right) .
\end{align*}
$$

With the initial condition $\underline{w}_{0}=\binom{1}{2}$ and $h=0.1$, this gives the following result for the predictor

$$
\underline{w}_{1}^{*}=\binom{1}{2}+\frac{1}{10}\left(\left(\begin{array}{cc}
0 & 1 \tag{11}\\
-3 & -4
\end{array}\right)\binom{1}{2}+\binom{0}{1}\right)=\binom{6 / 5}{1} .
$$

The corrector is calculated as follows

$$
\begin{align*}
& \underline{w}_{1}=\binom{1}{2}+\frac{1}{20}\left(\left(\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right)\binom{1}{2}+\binom{0}{1}+\left(\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right)\binom{6 / 5}{1}+\binom{0}{\cos \left(\frac{1}{10}\right)}\right)= \\
& =\binom{1.1500}{1.1698} \tag{12}
\end{align*}
$$

(d) Consider the test equation $y^{\prime}=\lambda y$, then one gets

$$
\begin{align*}
& w_{n+1}^{*}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n} \\
& w_{n+1}=w_{n}+\frac{h}{2}\left(\lambda w_{n}+\lambda w_{n+1}^{*}\right)= \tag{13}\\
& =w_{n}+\frac{h}{2}\left(\lambda w_{n}+\lambda\left(w_{n}+h \lambda w_{n}\right)\right)=\left(1+h \lambda+\frac{(h \lambda)^{2}}{2}\right) w_{n} .
\end{align*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+\frac{(h \lambda)^{2}}{2} . \tag{14}
\end{equation*}
$$

(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues are substituted into the amplification factor. The eigenvalues of the matrix A are given by $\lambda_{1}=-1$ and $\lambda_{2}=-3$. We first check the amplification factor of $\lambda_{1}=-1$:

$$
\begin{equation*}
-1 \leq 1-h+\frac{1}{2} h^{2} \leq 1 \tag{15}
\end{equation*}
$$

The first inequality leads to

$$
0 \leq 2-h+\frac{1}{2} h^{2}
$$

Since the discriminant of this equation is equal to $1-4 * \frac{1}{2} * 2=-3$ the inequality always holds. The second inequality leads to

$$
-h+\frac{1}{2} h^{2} \leq 0
$$

so

$$
\frac{1}{2} h^{2} \leq h
$$

which implies

$$
h \leq 2
$$

Now we check the amplification factor of $\lambda_{2}=-3$:

$$
\begin{equation*}
-1 \leq 1-3 h+\frac{1}{2} 9 h^{2} \leq 1 \tag{16}
\end{equation*}
$$

The first inequality leads to

$$
0 \leq 2-3 h+\frac{1}{2} 9 h^{2}
$$

Since the discriminant of this equation is equal to $9-4 * \frac{9}{2} * 2=-27$ the inequality always holds. The second inequality leads to

$$
-3 h+\frac{9}{2} h^{2} \leq 0
$$

so

$$
\frac{3}{2} h^{2} \leq h
$$

which implies

$$
h \leq \frac{2}{3}
$$

So the modified Euler method is stable if $h \leq \frac{2}{3}$.
2. (a) We have to check whether the requirements for the Convergence Theorem (see Theorem 4.3.2 in Vuik et al.) on convergence are satisfied. We have to remark that these requirements give a sufficient condition for convergence to the fixed point if we choose an initial value in a neighborhood around the fixed point p. The theorem is formulated as follows:

Theorem: If there exists a $\delta>0$ such that $g(x) \in C^{1}[p-\delta, p+\delta]$ (the first order derivative of $g(x)$ is continuous), then, the fixed point method converges for each initial value $p_{0} \in[p-\delta, p+\delta]$ if the following hypotheses are satisfied:
i. $g:[p-\delta, p+\delta] \longrightarrow[p-\delta, p+\delta]$;
ii. There exists a $r>0$ such that

$$
\left|g^{\prime}(x)\right| \leq r<1, \text { for } x \in[p-\delta, p+\delta]
$$

Firstly, the derivative of $g(x)$ is given by

$$
g^{\prime}(x)=1-\frac{f^{\prime}(x)}{\alpha}
$$

Further, we have

$$
g^{\prime}(p)=1-\frac{f^{\prime}(p)}{\alpha}>1-\frac{f^{\prime}(p)}{f^{\prime}(p)}=0
$$

since $0<f^{\prime}(p)<\alpha$. From this, it also follows that

$$
g^{\prime}(p)=1-\frac{f^{\prime}(p)}{\alpha}<1
$$

since $f^{\prime}(p)>0$ and $\alpha>0$. When we combine these bounds for the derivative of g^{\prime} with continuity of $f^{\prime}(x)$, and hence also with continuity of $g^{\prime}(x)$ around p, it follows that there is a neighborhood around p for which we have $0<g^{\prime}(x)<1$. In other words, mathematically speaking: There exists a $\delta>0$ for which $0<$ $g^{\prime}(x)<1$ for each $x \in[p-\delta, p+\delta]$. Hence the first hypothesis of the convergence theorem is satisfied.
Further, via the Mean Value Theorem, we get

$$
\begin{aligned}
& g(p+\delta)=g(p)+\delta g^{\prime}\left(\xi_{1}\right), \text { for a } \xi_{1} \in(p-\delta, p+\delta) \text { and, } \\
& g(p-\delta)=g(p)-\delta g^{\prime}\left(\xi_{2}\right), \text { for a } \xi_{2} \in(p-\delta, p+\delta)
\end{aligned}
$$

This yields with $0<g^{\prime}(\xi)<1$ and $g(p)=p$:

$$
g(p-\delta)=g(p)-\delta g^{\prime}\left(\xi_{1}\right)>p-\delta, \text { and } g(p+\delta)=g(p)+\delta g^{\prime}\left(\xi_{2}\right)<p+\delta
$$

Hence, we have $g(p \pm \delta) \in[p-\delta, p+\delta]$. Since $g(x)$ is monotonical on $[p-\delta, p+\delta]$, $g(x)$ cannot assume any values outside the range $[p-\delta, p+\delta]$ if $x \in[p-\delta, p+\delta]$. Hence, we have

$$
g(x) \in[p-\delta, p+\delta], \text { for } x \in[p-\delta, p+\delta]
$$

which is equivalent to the second hypothesis. This all sustains convergence if the initial guess is chosen within a neighborhood around the fixed point p.
(b) The method of Newton-Raphson is based on linearization around the iterate p_{n}. This is given by

$$
\begin{equation*}
L(x)=f\left(p_{n}\right)+\left(x-p_{n}\right) f^{\prime}\left(p_{n}\right) \tag{17}
\end{equation*}
$$

Next, we determine p_{n+1} such that $L\left(p_{n+1}\right)=0$, that is

$$
\begin{equation*}
f\left(p_{n}\right)+\left(p_{n+1}-p_{n}\right) f^{\prime}\left(p_{n}\right)=0 \Leftrightarrow p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}, \quad f^{\prime}\left(p_{n}\right) \neq 0 \tag{18}
\end{equation*}
$$

This result can also be proved graphically, see book, chapter 4.
(c) We have $f(x)=x^{2}-2 x-2$, so $f^{\prime}(x)=2 x-2$ and hence

$$
p_{n+1}=p_{n}-\frac{p_{n}^{2}-2 p_{n}-2}{2 p_{n}-2}
$$

With the initial value $p_{0}=2$, this gives

$$
p_{1}=2-\frac{4-4-2}{4-2}=3 .
$$

(d) We have $f^{\prime}(x)=2 x-2$ and hence $f^{\prime}(1)=0$ with starting value $p_{0}=1$. In the recursion, one divides by zero. Division by zero does not make any sense, so $p_{0}=1$ is not a suitable starting value. Geometrically, one may remark that the tangent is horizontal on $p_{0}=1$.
(e) We answer both questions sequentially:

- The linear interpolation polynomial with points x_{0} en x_{1} is given by:

$$
\begin{equation*}
P_{1}(x)=y\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+y\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}}=-(x-1)+3(x-2 / 3)=2 x-1 . \tag{19}
\end{equation*}
$$

- We have $P_{1}(x)=1 / 2 \Leftrightarrow 2 x-1=1 / 2$. Solution of this equation in x gives $x=\frac{3}{4}$.

