DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday August 25 2011, 18:30-21:30

1. (a) The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h} . \tag{1}
\end{equation*}
$$

Here we obtain y_{n+1} by a Taylor expansion around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) . \tag{2}
\end{equation*}
$$

For z_{n+1}, we obtain, after substitution of the predictor step for z_{n+1}^{*} into the corrector step

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left((1-\theta) f\left(t_{n}, y_{n}\right)+\theta f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right) \tag{3}
\end{equation*}
$$

After a Taylor expansion of $f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)$ around $\left(t_{n}, y_{n}\right)$ one obtains:

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left((1-\theta) f\left(t_{n}, y_{n}\right)+\theta\left(f\left(t_{n}, y_{n}\right)+h\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+f\left(t_{n}, y_{n}\right) \frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y}\right)\right)+O\left(h^{2}\right)\right) . \tag{4}
\end{equation*}
$$

From the differential equation we know that:

$$
\begin{equation*}
y^{\prime}\left(t_{n}\right)=f\left(t_{n}, y_{n}\right) \tag{5}
\end{equation*}
$$

From the Chain Rule of Differentiation, we derive

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right) \tag{6}
\end{equation*}
$$

after substitution of the differential equation one obtains:

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) \tag{7}
\end{equation*}
$$

This implies that $z_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\theta h^{2} y^{\prime \prime}\left(t_{n}\right)$. Subsequently, it follows that

$$
\begin{gather*}
y_{n+1}-z_{n+1}=O\left(h^{2}\right), \text { and, hence } \tau_{n+1}(h)=\frac{O\left(h^{2}\right)}{h}=O(h) \text { for } 0 \leq \theta \leq 1, \tag{8}\\
y_{n+1}-z_{n+1}=O\left(h^{3}\right), \text { and, hence } \tau_{n+1}(h)=\frac{O\left(h^{3}\right)}{h}=O\left(h^{2}\right) \text { for } \theta=\frac{1}{2} . \tag{9}
\end{gather*}
$$

(b) Consider the test equation $y^{\prime}=\lambda y$, then, herewith, one obtains

$$
\begin{align*}
& w_{n+1}^{*}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n}, \\
& w_{n+1}=w_{n}+h\left((1-\theta) \lambda w_{n}+\theta \lambda w_{n+1}^{*}\right)= \tag{10}\\
& =w_{n}+h\left((1-\theta) \lambda w_{n}+\theta \lambda\left(w_{n}+h \lambda w_{n}\right)\right)=\left(1+h \lambda+\theta(h \lambda)^{2}\right) w_{n} .
\end{align*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+\theta(h \lambda)^{2} . \tag{11}
\end{equation*}
$$

(c) We start this exercise by using the following vector:

$$
\begin{aligned}
& x_{1}=y \\
& x_{2}=y^{\prime}
\end{aligned}
$$

From this it follows that

$$
\begin{gathered}
x_{1}^{\prime}=y^{\prime}=x_{2} \\
x_{2}^{\prime}=y^{\prime \prime}=-4 y^{\prime}-8 y+t^{2}-1=-4 x_{2}-8 x_{1}+t^{2}-1
\end{gathered}
$$

where we have used the second order differential equation. We can write this as follows in matrix-vector notation:

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
-8 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{t^{2}-1}
$$

So it follows that $A=\left(\begin{array}{cc}0 & 1 \\ -8 & -4\end{array}\right)$ and $f(t)=0$ and $g(t)=t^{2}-1$.
(d) In order to do one step we first note that

$$
\binom{x_{1}(0)}{x_{2}(0)}=\binom{y(0)}{y^{\prime}(0)}=\binom{0}{1}
$$

The predictor step with $h=1$ now gives:

$$
w_{1}^{*}=\binom{0}{1}+1\left(\left(\begin{array}{cc}
0 & 1 \\
-8 & -4
\end{array}\right)\binom{0}{1}+\binom{0}{-1}\right)=\binom{0}{1}+\binom{1}{-5}=\binom{1}{-4}
$$

Finally the correction step with $\theta=\frac{1}{2}$ leads to

$$
w_{1}=\binom{0}{1}+\frac{1}{2}\binom{1}{-5}+\frac{1}{2}\left(\left(\begin{array}{cc}
0 & 1 \\
-8 & -4
\end{array}\right)\binom{1}{-4}+\binom{0}{0}\right)=\binom{-1.5}{2.5}
$$

(e) Compute the eigenvalues of matrix $\left(\begin{array}{cc}0 & 1 \\ -8 & -4\end{array}\right)$. To do this we compute the determinant of $\left(\begin{array}{cc}-\lambda & 1 \\ -8 & -4-\lambda\end{array}\right)$, which is equal to $\lambda^{2}+4 \lambda+8$. The roots of this polynomial are equal to $\lambda_{1}=-2+2 i$ and $\lambda_{2}=-2-2 i$. Since $\lambda_{2}=\bar{\lambda}_{1}$ it is sufficient to consider λ_{1} only. For $h=1$ we obtain $h \lambda_{1}=-2+2 i$. This implies that

$$
\begin{gathered}
Q\left(h \lambda_{1}\right)=1+h \lambda_{1}+\theta\left(h \lambda_{1}\right)^{2} \\
Q\left(h \lambda_{1}\right)=1+(-2+2 i)+\theta(-2+2 i)^{2} \\
Q\left(h \lambda_{1}\right)=1-2+2 i+\theta(4-8 i-4)=-1+i(2-8 \theta)
\end{gathered}
$$

In order to check that $\left|Q\left(h \lambda_{1}\right)\right| \leq 1$, we compute the modulus of $Q\left(h \lambda_{1}\right)$, which is equal to

$$
\sqrt{1^{2}+(2-8 \theta)^{2}}
$$

It is easy to see that this is only less than or equal to 1 if $\theta=\frac{1}{4}$.
2. (a) The Taylor polynomials around 0 are given by:

$$
\begin{aligned}
f(0) & =f(0) \\
f(h) & =f(0)+h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime \prime}(0)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right) \\
f(2 h) & =f(0)+2 h f^{\prime}(0)+2 h^{2} f^{\prime \prime}(0)+\frac{(2 h)^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

Here $\xi_{1} \in(0, h), \xi_{2} \in(0,2 h)$. We know that $Q(h)=\frac{\alpha_{0}}{h^{2}} f(0)+\frac{\alpha_{1}}{h^{2}} f(h)+\frac{\alpha_{2}}{h^{2}} f(2 h)$, which should be equal to $f^{\prime \prime}(0)+O(h)$. This leads to the following conditions:

$$
\begin{aligned}
f(0): & \frac{\alpha_{0}}{h^{2}}+\quad \frac{\alpha_{1}}{h^{2}}+\frac{\alpha_{2}}{h^{2}} & =0 \\
f^{\prime}(0): & \frac{h \alpha_{1}}{h^{2}}+\frac{2 h \alpha_{2}}{h^{2}} & =0 \\
f^{\prime \prime}(0): & \frac{h^{2}}{2 h^{2}} \alpha_{1}+\frac{2 h^{2} \alpha_{2}}{h^{2}} & =1
\end{aligned}
$$

This can also be written as

$$
\begin{aligned}
f(0): & \alpha_{0}+\alpha_{1}+\alpha_{2} & =0 \\
f^{\prime}(0): & \alpha_{1}+2 \alpha_{2} & =0 \\
f^{\prime \prime}(0): & \frac{\alpha_{1}}{2}+2 \alpha_{2} & =1
\end{aligned}
$$

(b) The truncation error follows from the Taylor polynomials:

$$
\begin{gathered}
f^{\prime \prime}(0)-Q(h)=f^{\prime \prime}(0)-\frac{f(0)-2 f(h)+f(2 h)}{h^{2}}=\frac{-\frac{2 h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right)+\frac{8 h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)}{h^{2}} \\
=h f^{\prime \prime \prime}(\xi)
\end{gathered}
$$

(c) Note that

$$
\begin{align*}
f^{\prime \prime}(0)-Q(h) & =K h \tag{12}\\
f^{\prime \prime}(0)-Q\left(\frac{h}{2}\right) & =K\left(\frac{h}{2}\right) \tag{13}
\end{align*}
$$

Subtraction gives:

$$
\begin{equation*}
Q\left(\frac{h}{2}\right)-Q(h)=K h-K \frac{h}{2}=K\left(\frac{h}{2}\right) \tag{14}
\end{equation*}
$$

We choose $h=\frac{1}{2}$. Then $Q(h)=Q\left(\frac{1}{2}\right)=\frac{0-2 \times 0.1250+1}{0.25}=3$ and $Q\left(\frac{h}{2}\right)=Q\left(\frac{1}{4}\right)=$ $\frac{0-2 \times 0.0156+0.1250}{\left(\frac{1}{4}\right)^{2}}=1.5008$. Combining (13) and (14) shows that

$$
f^{\prime \prime}(0)-Q\left(\frac{1}{4}\right)=Q\left(\frac{1}{4}\right)-Q\left(\frac{1}{2}\right)=-1.4992
$$

(d) To estimate the rounding error we note that

$$
\begin{aligned}
\mid Q(h) & -\hat{Q}(h)\left|=\left|\frac{(f(0)-\hat{f}(0))-2(f(h)-\hat{f}(h))+(f(2 h)-\hat{f}(2 h))}{h^{2}}\right|\right. \\
& \leq \frac{|f(0)-\hat{f}(0)|+2|f(h)-\hat{f}(h)|+|f(2 h)-\hat{f}(2 h)|}{h^{2}} \leq \frac{4 \epsilon}{h^{2}}
\end{aligned}
$$

so $C_{1}=4$. Since only 4 digits are given the rounding error is: $\epsilon=0.00005$.
(e) The total error is bounded by

$$
\begin{aligned}
&\left|f^{\prime \prime}(0)-\hat{Q}(h)\right|=\left|f^{\prime \prime}(0)-Q(h)+Q(h)-\hat{Q}(h)\right| \\
& \leq\left|f^{\prime \prime}(0)-Q(h)\right|+|Q(h)-\hat{Q}(h)| \\
& \leq 6 h+\frac{4 \epsilon}{h^{2}}=g(h)
\end{aligned}
$$

This is minimal for $h_{\text {opt }}$, for which $g^{\prime}\left(h_{\text {opt }}\right)=0$. Note that $g^{\prime}(h)=6-\frac{8 \epsilon}{h^{3}}$. This implies that $h_{o p t}^{3}=\frac{4 \epsilon}{3}$, so $h_{\text {opt }}=\left(\frac{4 \epsilon}{3}\right)^{\frac{1}{3}} \approx 0.0405$.

